首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The complex architecture of oxygenic photosynthesis   总被引:1,自引:0,他引:1  
Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on earth. The primary step in this process - the conversion of sunlight into chemical energy - is driven by four, multisubunit, membrane-protein complexes that are known as photosystem I, photosystem II, cytochrome b(6)f and F-ATPase. Structural insights into these complexes are now providing a framework for the exploration not only of energy and electron transfer, but also of the evolutionary forces that shaped the photosynthetic apparatus.  相似文献   

3.
Recent structural determinations and metagenomic studies shed light on the evolution of photosystem I (PSI) from the homodimeric reaction centre of primitive bacteria to plant PSI at the top of the evolutionary development. The evolutionary scenario of over 3.5 billion years reveals an increase in the complexity of PSI. This phenomenon of ever-increasing complexity is common to all evolutionary processes that in their advanced stages are highly dependent on fine-tuning of regulatory processes. On the other hand, the recently discovered virus-encoded PSI complexes contain a minimal number of subunits. This may reflect the unique selection scenarios associated with viral replication. It may be beneficial for future engineering of productive processes to utilize ‘primitive’ complexes that disregard the cellular regulatory processes and to avoid those regulatory constraints when our goal is to divert the process from its original route. In this article, we discuss the evolutionary forces that act on viral reaction centres and the role of the virus-carried photosynthetic genes in the evolution of photosynthesis.  相似文献   

4.
Yu QB  Li G  Wang G  Sun JC  Wang PC  Wang C  Mi HL  Ma WM  Cui J  Cui YL  Chong K  Li YX  Li YH  Zhao Z  Shi TL  Yang ZN 《Cell research》2008,18(10):1007-1019
Chloroplast is a typical plant cell organelle where photosynthesis takes place. In this study, a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions. We then constructed a chloroplast protein interaction network primarily based on these core protein interactions. The network had 22 925 protein interaction pairs which involved 2 214 proteins. A total of 160 previously uncharacterized proteins were annotated in this network. The subunits of the photosynthetic complexes were modularized, and the functional relationships among photosystem Ⅰ (PSI), photosystem Ⅱ (PSII), light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network. We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis. Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.  相似文献   

5.
Molecular recognition in thylakoid structure and function.   总被引:1,自引:0,他引:1  
  相似文献   

6.
We report a structural characterization by electron microscopy of green plant photosystem I solubilized by the mild detergent n-dodecyl-alpha-D-maltoside. It is shown by immunoblotting that the isolated complexes contain all photosystem I core proteins and all peripheral light-harvesting proteins. The electron microscopic analysis is based on a large data set of 14 000 negatively stained single-particle projections and reveals that most of the complexes are oval-shaped monomers. The monomers have a tendency to associate into artificial dimers, trimers, and tetramers in which the monomers are oppositely oriented. Classification of the dimeric complexes suggests that some of the monomers lack a part of the peripheral antenna. On the basis of a comparison with projections from trimeric photosystem I complexes from cyanobacteria, we conclude that light-harvesting complex I only binds to the core complex at the side of the photosystem I F/J subunits and does not cause structural hindrances for the type of trimerization observed in cyanobacterial photosystem I.  相似文献   

7.
Vasil'ev S  Bruce D 《The Plant cell》2004,16(11):3059-3068
The efficiency of oxygenic photosynthesis depends on the presence of core antenna chlorophyll closely associated with the photochemical reaction centers of both photosystem II (PSII) and photosystem I (PSI). Although the number and overall arrangement of these chlorophylls in PSII and PSI differ, structural comparison reveals a cluster of 26 conserved chlorophylls in nearly identical positions and orientations. To explore the role of these conserved chlorophylls within PSII and PSI we studied the influence of their orientation on the efficiency of photochemistry in computer simulations. We found that the native orientations of the conserved chlorophylls were not optimal for light harvesting in either photosystem. However, PSII and PSI each contain two highly orientationally optimized antenna chlorophylls, located close to their respective reaction centers, in positions unique to each photosystem. In both photosystems the orientation of these optimized bridging chlorophylls had a much larger impact on photochemical efficiency than the orientation of any of the conserved chlorophylls. The differential optimization of antenna chlorophyll is discussed in the context of competing selection pressures for the evolution of light harvesting in photosynthesis.  相似文献   

8.
The sun’s spectrum harvested through photosynthesis is the primary source of energy for life on earth. Plants, green algae, and cyanobacteria—the major primary producers on earth—utilize reaction centers that operate at wavelengths of 680 and 700 nm. Why were these wavelengths “chosen” in evolution? This study analyzes the efficiency of light conversion into chemical energy as a function of hypothetical reaction center absorption wavelengths given the sun’s spectrum and the overpotential cost associated with charge separation. Surprisingly, it is found here that when taking into account the empirical charge separation cost the range 680–720 nm maximizes the conversion efficiency. This suggests the possibility that the wavelengths of photosystem I and II were optimized at some point in their evolution for the maximal utilization of the sun’s spectrum.  相似文献   

9.
Photosynthetic oxygen evolution, chlorophyll contents and chlorophylla /b ratios of 3rd to 6th leaves of rice seedlings were measuredto examine whether or not inactivation of photosynthesis duringsenescence is related to loss of chlorophyll. Photosyntheticactivity decreased more rapidly than chlorophyll content duringleaf senescence; as a result, the lower the leaf position, thelower was the rate of oxygen evolution determined on the basisof chlorophyll. Chlorophyll ab ratio also decreased with advancingsenescence. Electrophoretic analysis revealed that the declinein chlorophyll ab ratio is due to more rapid degradation ofthe reaction center complexes than light-harvesting chlorophyllab proteins of photosystem II and that the photosystem I reactioncenter disappears in parallel with the inactivation of photosynthesis.A simple method was developed to estimate the amounts of chlorophylla associated with the reaction center complexes of the two photosystemsfrom the total chlorophyll contents and chlorophyll ab ratiosof leaves. Rates of oxygen evolution, determined on the basisof chlorophyll a bound to the reaction center complexes, remainedconstant throughout the course of senescence. Thus, inactivationof photosynthesis is closely related with loss of the reactioncenter complexes during leaf senescence of rice seedlings. Theresults suggest that loss of photosynthesis is mainly causedby loss of a functional unit of photosynthesis or by a decreasein the number of whole chloroplasts. (Received April 22, 1987; Accepted August 13, 1987)  相似文献   

10.
The energetic metabolism of photosynthetic organisms is profoundly influenced by state transitions and cyclic electron flow around photosystem I. The former involve a reversible redistribution of the light-harvesting antenna between photosystem I and photosystem II and optimize light energy utilization in photosynthesis whereas the latter process modulates the photosynthetic yield. We have used the wild-type and three mutant strains of the green alga Chlamydomonas reinhardtii—locked in state I (stt7), lacking the photosystem II outer antennae (bf4) or accumulating low amounts of cytochrome b6f complex (A-AUU)—and measured electron flow though the cytochrome b6f complex, oxygen evolution rates and fluorescence emission during state transitions. The results demonstrate that the transition from state 1 to state 2 induces a switch from linear to cyclic electron flow in this alga and reveal a strict cause–effect relationship between the redistribution of antenna complexes during state transitions and the onset of cyclic electron flow.  相似文献   

11.
The ultrastructures of two closely related strains of a novel diazotrophic cyanobacterium, Synechocystis sp. BO 8402 and BO 9201, were examined using ultrathin sections and freeze-fracture electron microscopy. Cells of both strains were surrounded by an unusual thick peptidoglycan layer. Substructures in the layer indicated the presence of microplasmodesmata aligned perpendicular to the free cell surface and in the septum of dividing cells. Synechocystis sp. strain BO 8402 contained lobed, electronopaque, highly fluorescent inclusion bodies consisting of phycocyanin-linker complexes. The thylakoids lacked phycobilisomes and accommodated, in addition to randomly distributed exoplasmic freeze-fracture particles, patches of two-dimensionally ordered arrays of dimeric photosystem II particles in the exoplasmic fracture face. Determination of photosystem I and photosystem II suggested an increase of photosystem II in strain BO 8402. Strain BO 9201 performed phycobilisome-supported photosynthesis and showed rows of dimeric photosystem II particles in the exoplasmic fracture face. Corresponding particle-free grooves in the protoplasmic fracture face were lined by a class of large particles tentatively assigned as trimers of photosystem I. The different lateral organization of protein complexes in the thylakoid membranes and the fine structure of the cell wall are discussed with respect to absorption cross-section of photosynthesis and nitrogen fixation.Abbreviations EF Exoplasmic freeze-fracture face - P 700 Reaction centre chlorophyll of photosystem I - PF Protoplasmic freeze-fracture face - PS I Photosystem I - PS II Photosystem II  相似文献   

12.
The role of lipids in photosystem II   总被引:1,自引:0,他引:1  
The thylakoid membranes of photosynthetic organisms, which are the sites of oxygenic photosynthesis, are composed of monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylglycerol (PG). The identification of many genes involved in the biosynthesis of each lipid class over the past decade has allowed the generation and isolation of mutants of various photosynthetic organisms incapable of synthesizing specific lipids. Numerous studies using such mutants have revealed that deficiency of these lipids primarily affects the structure and function of photosystem II (PSII) but not of photosystem I (PSI). Recent X-ray crystallographic analyses of PSII and PSI complexes from Thermosynechococcus elongatus revealed the presence of 25 and 4 lipid molecules per PSII and PSI monomer, respectively, indicating the enrichment of lipids in PSII. Therefore, lipid molecules bound to PSII may play special roles in the assembly and functional regulation of the PSII complex. This review summarizes our present understanding of the biochemical and physiological roles of lipids in photosynthesis, with a special focus on PSII. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

13.
The effects of lanthanum and calcium ions on electron transport, dichlorephenol indophenol (DCIP) photoreduction, and oxygen evolution activities in chloroplast from cucumber (Cucumis satives L.) were determined. The lanthanum inhibited the whole electron chain-transport activity of chloroplast. DCIP photoreduction and oxygen evolution activities of the photosystem I (PSII) also decrease after treatment with La3+. But the diminished activities of PSII and chloroplast caused by La3+ could be reversed by Ca2+ and even became higher than the control level. The concentration analysis of related protein complexes to photoelectron transport in chloroplast included that La3+ induced the concentration of chlorophyll protein complexes increasing but caused some nonchlorophyll protein complexes to decompose partially. This increasing effect of La3+ on chlorophyll protein complexes results in the improvement of chlorophyll content, which will improve the absorption of photoelectron and energy transport in the process of photosynthesis.  相似文献   

14.
Kargul J  Barber J 《The FEBS journal》2008,275(6):1056-1068
In order to carry out photosynthesis, plants and algae rely on the co-operative interaction of two photosystems: photosystem I and photosystem II. For maximum efficiency, each photosystem should absorb the same amount of light. To achieve this, plants and green algae have a mobile pool of chlorophyll a/b-binding proteins that can switch between being light-harvesting antenna for photosystem I or photosystem II, in order to maintain an optimal excitation balance. This switch, termed state transitions, involves the reversible phosphorylation of the mobile chlorophyll a/b-binding proteins, which is regulated by the redox state of the plastoquinone-mediating electron transfer between photosystem I and photosystem II. In this review, we will present the data supporting the function of redox-dependent phosphorylation of the major and minor chlorophyll a/b-binding proteins by the specific thylakoid-bound kinases (Stt7, STN7, TAKs) providing a molecular switch for the structural remodelling of the light-harvesting complexes during state transitions. We will also overview the latest X-ray crystallographic and electron microscopy-derived models for structural re-arrangement of the light-harvesting antenna during State 1-to-State 2 transition, in which the minor chlorophyll a/b-binding protein, CP29, and the mobile light-harvesting complex II trimer detach from the light-harvesting complex II-photosystem II supercomplex and associate with the photosystem I core in the vicinity of the PsaH/L/O/P domain.  相似文献   

15.
Photosystem II is a photochemical reaction center that catalyzes the light‐driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here, we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale, we hypothesize that this early Archean photosystem was capable of water oxidation to oxygen and had already evolved protection mechanisms against the formation of reactive oxygen species. This would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.  相似文献   

16.
The unicellular Cyanobacterium Cyanothece sp. ATCC 51142, grown under alternating 12-h light/12-h dark conditions, temporally separated N2 fixation from photosynthesis. The regulation of photosynthesis was studied using fluorescence spectra and kinetics to determine changes in state transitions and photosystem organization. The redox poise of the plastoquinone (PQ) pool appeared to be central to this regulation. Respiration supported N2 fixation by oxidizing carbohydrate granules, but reduced the PQ pool. This induced state 2 photosystem II monomers and lowered the capacity for O2 evolution. State 2 favored photosystem I trimers and cyclic electron transport, which could stimulate N2 fixation; the stimulation suggested an ATP limitation to N2 and CO2 fixation. The exhaustion of carbohydrate granules at around 6 h in the dark resulted in reduced respiratory electron flow, which led to a more oxidized PQ pool and produced a sharp transition from state 2 to state 1. This transient state 1 returned to state 2 in the remaining hours of darkness. In the light phase, photosystem II dimerization correlated with increased phycobilisome coupling to photosystem II (state 1) and increased rates of O2 evolution. However, dark adaptation did not guarantee state 2 and left photosystem I centers in a mostly monomeric state at certain times.  相似文献   

17.
A photosystem II (PSII) core complex lacking the internal antenna CP43 protein was isolated from the photosystem II of Synechocystis PCC6803, which lacks photosystem I (PSI). CP47-RC and reaction centre (RCII) complexes were also obtained in a single procedure by direct solubilization of whole thylakoid membranes. The CP47-RC subcore complex was characterized by SDS/PAGE, immunoblotting, MALDI MS, visible and fluorescence spectroscopy, and absorption detected magnetic resonance. The purity and functionality of RCII was also assayed. These preparations may be useful for mutational analysis of PSII RC and CP47-RC in studying primary reactions of oxygenic photosynthesis.  相似文献   

18.
Transient complexes, with a lifetime ranging between microseconds and seconds, are essential for biochemical reactions requiring a fast turnover. That is the case of the interactions between proteins engaged in electron transfer reactions, which are involved in relevant physiological processes such as respiration and photosynthesis. In the latter, the copper protein plastocyanin acts as a soluble carrier transferring electrons between the two membrane-embedded complexes cytochrome b(6)f and photosystem I. Here we review the combination of experimental efforts in the literature to unveil the functional and structural features of the complex between cytochrome f and plastocyanin, which have widely been used as a suitable model for analyzing transient redox interactions.  相似文献   

19.
Chloroplasts were isolated from spinach cultured in calcium-deficient, cerium-chloride-administered calcium-present Hoagland’s media or that of calcium-deficient Hoagland’s media and demonstrated the effects of cerium on distribution of light energy between photosystems II and I and photochemical activities of spinach chloroplast grown in calcium-deficient media. It was observed that calcium deprivation significantly inhibited light absorption, energy transfer from LHCII to photosystemII, excitation energy distribution from PSI to PSII, and transformation from light energy to electron energy and oxygen evolution of chloroplasts. However, cerium treatment to calcium-deficient chloroplasts could obviously improve light absorption and excitation energy distribution from photosystem I to photosystem II and increase activity of whole chain electron transport, photosystems II and I DCPIP photoreduction, and oxygen evolution of chloroplasts. The results suggested that cerium under calcium deficiency condition could substitute for calcium in chloroplasts, maintain the stability of chloroplast membrane, and improve photosynthesis of spinach chloroplast, but the mechanisms still need further study.  相似文献   

20.
Low-temperature emission spectra and excitation spectra for chlorophyll fluorescence were recorded from leaves of species of the genus Flaveria (Asteraceae) with C3, C3-C4-intermediate, C4-like, and C4 photosynthesis. Among the latter two groups, high chlorophyll b absorption was observed in excitation spectra for photosystem I (PSI) fluorescence. By comparing leaf data with those from isolated chloroplast fractions, the high chlorophyll b absorption was attributed to the specific properties of the bundle-sheath chloroplasts in leaves from C4 plants. The deconvolution of the PSI excitation spectra and the use of a model revealed that the contribution of photosystem II absorption to the functional antenna of PSI was markedly increased in leaves from three of the five C4-like and C4 species investigated in detail. The two other species exhibited normal, C3-like light-harvesting properties of PSI. The former species are known for efficient carbon assimilation, the latter for decreased efficiencies of carbon assimilation. It is concluded that photosystem II becomes a substantial part of the functional PSI antenna late in the evolution of C4 photosynthesis, and that the composite antenna optimizes the light-harvesting of PSI in bundle-sheath chloroplasts to meet the energy requirements of C4 photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号