首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have identified two novel genes designated hhp1+ and hhp2+ in the fission yeast Schizosaccharomyces pombe. The hhp1+ and hhp2+ genes encode two closely related protein kinases that share significant sequence identities with Hrr25p from Saccharomyces cerevisiae. Characterization of strains harboring single and double mutations in the hhp+ genes reveals DNA repair defects in these cells. Schizosaccharomyces pombe strains lacking either or both Hhp activities reveal differences in their ability to withstand DNA lesions caused by either methyl methanesulfonate (MMS) or gamma-rays which correlate with their ability to repair DNA strand breaks caused by these agents. We suggest that Hhp1 and Hhp2 are involved in the regulation of distinct and overlapping DNA repair pathways in S. pombe.  相似文献   

2.
DNA damage is unavoidable, and organisms across the evolutionary spectrum possess DNA repair pathways that are critical for cell viability and genomic stability. To understand the role of base excision repair (BER) in protecting eukaryotic cells against alkylating agents, we generated Schizosaccharomyces pombe strains mutant for the mag1 3-methyladenine DNA glycosylase gene. We report that S. pombe mag1 mutants have only a slightly increased sensitivity to methylation damage, suggesting that Mag1-initiated BER plays a surprisingly minor role in alkylation resistance in this organism. We go on to show that other DNA repair pathways play a larger role than BER in alkylation resistance. Mutations in genes involved in nucleotide excision repair (rad13) and recombinational repair (rhp51) are much more alkylation sensitive than mag1 mutants. In addition, S. pombe mutant for the flap endonuclease rad2 gene, whose precise function in DNA repair is unclear, were also more alkylation sensitive than mag1 mutants. Further, mag1 and rad13 interact synergistically for alkylation resistance, and mag1 and rhp51 display a surprisingly complex genetic interaction. A model for the role of BER in the generation of alkylation-induced DNA strand breaks in S. pombe is discussed.  相似文献   

3.
4.
5.
A new DNA repair gene from Schizosaccharomyces pombe with homology to RecA was identified and characterized. Comparative analysis showed highest similarity to Saccharomyces cerevisiae Rad55p. rhp55(+) (rad homologue pombe 55) encodes a predicted 350-amino-acid protein with an M(r) of 38,000. The rhp55Delta mutant was highly sensitive to methyl methanesulfonate (MMS), ionizing radiation (IR), and, to a lesser degree, UV. These phenotypes were enhanced at low temperatures, similar to deletions in the S. cerevisiae RAD55 and RAD57 genes. Many rhp55Delta cells were elongated with aberrant nuclei and an increased DNA content. The rhp55 mutant showed minor deficiencies in meiotic intra- and intergenic recombination. Sporulation efficiency and spore viability were significantly reduced. Double-mutant analysis showed that rhp55(+) acts in one DNA repair pathway with rhp51(+) and rhp54(+), homologs of the budding yeast RAD51 and RAD54 genes, respectively. However, rhp55(+) is in a different epistasis group for repair of UV-, MMS-, or gamma-ray-induced DNA damage than is rad22(+), a putative RAD52 homolog of fission yeast. The structural and functional similarity suggests that rhp55(+) is a homolog of the S. cerevisiae RAD55 gene and we propose that the functional diversification of RecA-like genes in budding yeast is evolutionarily conserved.  相似文献   

6.
A new DNA repair gene from fission yeast Schizosaccharomyces pombe rlp1+ (RecA-like protein) has been identified. Rlp1 shows homology to RecA-like proteins, and is the third S. pombe Rad51 paralog besides Rhp55 and Rhp57. The new gene encodes a 363 aa protein with predicted Mr of 41,700 and has NTP-binding motif. The rlp1Delta mutant is sensitive to methyl methanesulfonate (MMS), ionizing radiation (IR), and camptothecin (CPT), although to a lesser extent than the deletion mutants of rhp55+ and rhp51+ genes. In contrast to other recombinational repair mutants, the rlp1Delta mutant does not exhibit sensitivity to UV light and mitomycin C (MMC). Mitotic recombination is moderately reduced in rlp1 mutant. Epistatic analysis of MMS and IR-sensitivity of rlp1Delta mutant indicates that rlp1+ acts in the recombinational pathway of double-strand break (DSB) repair together with rhp51+, rhp55+, and rad22+ genes. Yeast two-hybrid analysis suggests that Rlp1 may interact with Rhp57 protein. We propose that Rlp1 have an accessory role in repair of a subset of DNA damage induced by MMS and IR, and is required for the full extent of DNA recombination and cell survival under condition of a replication fork collapse.  相似文献   

7.
The global genome repair (GGR) subpathway of nucleotide excision repair (NER) is capable of removing lesions throughout the genome. In Saccharomyces cerevisiae the RAD7 and RAD16 genes are essential for GGR. Here we identify rhp7 (+), the RAD7 homolog in Schizosaccharomyces pombe. Surprisingly, rhp7 (+)and the previously cloned rhp16 (+)are located very close together and are transcribed in opposite directions. Upon UV irradiation both genes are induced, reaching a maximum level after 45-60 min. These observations suggest that the genes are co-regulated. Schizo-saccharomyces pombe rhp7 or rhp16 deficient cells are, in contrast to S.cerevisiae rad7 and rad16 mutants, not sensitive to UV irradiation. In S.pombe an alternative repair mechanism, UV damage repair (UVDR), is capable of efficiently removing photolesions from DNA. In the absence of this UVDR pathway both rhp7 and rhp16 deficient cells display an enhanced UV sensitivity. Epistatic analyses show that rhp7 (+)and rhp16 (+)are only involved in NER. Repair analyses at nucleotide resolution demonstrate that both Rhp7 and Rhp16, probably acting in a complex, are essential for GGR in S.pombe.  相似文献   

8.
Recombinational repair was first detected in budding yeast Saccharomyces cerevisiae and was also studied in fission yeast Schizosaccharomyces pombe over the recent decade. The discovery of Sch. pombe homologs of the S. cerevisiae RAD52 genes made it possible not only to identify and to clone their vertebrate counterparts, but also to study in detail the role of DNA recombination in certain cell processes. For instance, recombinational repair was shown to play a greater role in maintaining genome integrity in fission yeast and in vertebrates compared with S. cerevisiae. The present state of the problem of recombinational double-strand break repair in fission yeast is considered with a focus on comparisons between Sch. pombe and higher eukaryotes. The role of double-strand break repair in maintaining genome stability is discussed.  相似文献   

9.
10.
Molecular genetic analyses in Schizosaccharomyces pombe are greatly enhanced by our ability to delete chromosomal genes via homologous recombination and to introduce genes expressed from autonomous plasmids. In this paper, we describe a novel approach to generating marked deletion cassettes that bypasses the need for the long, PAGE-purified oligonucleotides required in the currently used PCR-based deletion approach. We also describe additional uses of this two-step PCR method for constructing chromosomal insertion cassettes. Finally, we describe how gap repair in S. pombe can facilitate plasmid constructions in a manner that circumvents the reliance on compatible restriction sites in the DNA molecules that are being joined. Several applications of this gap repair plasmid construction strategy are discussed.  相似文献   

11.
Mutations in DNA repair/cell cycle checkpoint genes can lead to the development of cancer. The cloning of human homologs of yeast DNA repair/cell cycle checkpoint genes should yield candidates for human tumor suppressor genes as well as identifying potential targets for cancer therapy. TheSchizosaccharomyces pombegenesrad17, rad1,andhus1have been identified as playing roles in DNA repair and cell cycle checkpoint control pathways. We have cloned the cDNA for the human homolog ofS. pombe rad17,RAD17, which localizes to chromosomal location 5q13 by fluorescencein situhybridization and radiation hybrid mapping; the cDNA for the human homolog ofS. pombe rad1,RAD1, which maps to 5p14–p13.2; and the cDNA for the human homolog ofS. pombe hus1,HUS1, which maps to 7p13–p12. The human gene loci have previously been identified as regions containing tumor suppressor genes. In addition, we report the cloning of the cDNAs for genes related toS. pombe rad17, rad9, rad1,andhus1from mouse,Caenorhabditis elegans,andDrosophila melanogaster.These includeRad17andRad9fromD. melanogaster,hpr-17 and hpr-1 fromC. elegans,and RAD1 and HUS1 from mouse. The identification of homologs of theS. pomberad checkpoint genes from mammals, arthropods, and nematodes indicates that this cell cycle checkpoint pathway is conserved throughout eukaryotes.  相似文献   

12.
The RAD3 gene of Saccharomyces cerevisiae is required for excision repair and is essential for cell viability. RAD3 encoded protein possesses a single stranded DNA-dependent ATPase and DNA and DNA.RNA helicase activities. Mutational studies have indicated a requirement for the RAD3 helicase activities in excision repair. To examine the extent of conservation of structure and function of RAD3 during eukaryotic evolution, we have cloned the RAD3 homolog, rhp3+, from the distantly related yeast Schizosaccharomyces pombe. RAD3 and rhp3+ encoded proteins are highly similar, sharing 67% identical amino acids. We show that like RAD3, rhp3+ is indispensable for excision repair and cell viability, and our studies indicate a requirement of the putative rhp3+ DNA helicase activity in DNA repair. We find that the RAD3 and rhp3+ genes can functionally substitute for one another. The level of complementation provided by the rhp3+ gene in S.cerevisiae rad3 mutants or by the RAD3 gene in S.pombe rhp3 mutants is remarkable in that both the excision repair and viability defects in both yeasts are restored to wild type levels. These observations suggest a parallel evolutionary conservation of other protein components with which RAD3 interacts in mediating its DNA repair and viability functions.  相似文献   

13.
14.
Mutagenic and cytotoxic apurinic/apyrimidinic (AP) sites are among the most frequent lesions in DNA. Repair of AP sites is initiated by AP endonucleases and most organisms possess two or more of these enzymes. Saccharomyces cerevisiae has AP endonuclease 1 (Apn1) as the major enzymatic activity with AP endonuclease 2 (Apn2) being an important backup. Schizosaccharomyces pombe also encodes two potential AP endonucleases, and Apn2 has been found to be the main repair activity, while Apn1 has no, or only a limited role in AP site repair. Here we have identified a new 5' exon (exon 1) in the apn1 gene and show that the inactivity of S. pombe Apn1 is due to a nonsense mutation in the fifth codon of this new exon. Reversion of this mutation restored the AP endonuclease activity of S. pombe Apn1. Interestingly, the apn1 nonsense mutation was only found in laboratory strains derived from L972 h(-) and not in unrelated isolates of S. pombe. Since all S. pombe laboratory strains originate from L972 h(-), it appears that all experiments involving S. pombe have been conducted in an apn1(-) mutant strain with a corresponding DNA repair deficiency. These observations have implications both for future research in S. pombe and for the interpretation of previously conducted epistatis analysis.  相似文献   

15.
The human MRN complex is a multisubunit nuclease that is composed of Mre11, Rad50, and Nbs1 and is involved in homologous recombination and DNA damage checkpoints. Mutations of the MRN genes cause genetic disorders such as Nijmegen breakage syndrome. Here we identified a Schizosaccharomyces pombe nbs1(+) homologue by screening for mutants with mutations that caused methyl methanesulfonate (MMS) sensitivity and were synthetically lethal with the rad2Delta mutation. Nbs1 physically interacts with the C-terminal half of Rad32, the Schizosaccharomyces pombe Mre11 homologue, in a yeast two-hybrid assay. nbs1 mutants showed sensitivities to gamma-rays, UV, MMS, and hydroxyurea and displayed telomere shortening similar to the characteristics of rad32 and rad50 mutants. nbs1, rad32, and rad50 mutant cells were elongated and exhibited abnormal nuclear morphology. These findings indicate that S. pombe Nbs1 forms a complex with Rad32-Rad50 and is required for homologous recombination repair, telomere length regulation, and the maintenance of chromatin structure. Amino acid sequence features and some characteristics of the DNA repair function suggest that the S. pombe Rad32-Rad50-Nbs1 complex has functional similarity to the corresponding MRN complexes of higher eukaryotes. Therefore, S. pombe Nbs1 will provide an additional model system for studying the molecular function of the MRN complex associated with genetic diseases.  相似文献   

16.
Endonuclease III (Nth) enzyme from Escherichia coli is involved in base excision repair of oxidised pyrimidine residues in DNA. The Schizosaccharomyces pombe Nth1 protein is a sequence and functional homologue of E. coli Nth, possessing both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activity. Here, we report the construction and characterization of the S. pombe nth1 mutant. The nth1 mutant exhibited no enhanced sensitivity to oxidising agents, UV or gamma-irradiation, but was hypersensitive to the alkylating agent methyl methanesulphonate (MMS). Analysis of base excision from DNA exposed to [3H]methyl-N-nitrosourea showed that the purified Nth1 enzyme did not remove alkylated bases such as 3-methyladenine and 7-methylguanine whereas methyl-formamidopyrimidine was excised efficiently. The repair of AP sites in S. pombe has previously been shown to be independent of Apn1-like AP endonuclease activity, and the main reason for the MMS sensitivity of nth1 cells appears to be their lack of AP lyase activity. The nth1 mutant also exhibited elevated frequencies of spontaneous mitotic intrachromosomal recombination, which is a phenotype shared by the MMS-hypersensitive DNA repair mutants rad2, rhp55 and NER repair mutants rad16, rhp14, rad13 and swi10. Epistasis analyses of nth1 and these DNA repair mutants suggest that several DNA damage repair/tolerance pathways participate in the processing of alkylation and spontaneous DNA damage in S. pombe.  相似文献   

17.
18.
An alternative eukaryotic DNA excision repair pathway.   总被引:7,自引:2,他引:5       下载免费PDF全文
DNA lesions induced by UV light, cyclobutane pyrimidine dimers, and (6-4)pyrimidine pyrimidones are known to be repaired by the process of nucleotide excision repair (NER). However, in the fission yeast Schizosaccharomyces pombe, studies have demonstrated that at least two mechanisms for excising UV photo-products exist; NER and a second, previously unidentified process. Recently we reported that S. pombe contains a DNA endonuclease, SPDE, which recognizes and cleaves at a position immediately adjacent to cyclobutane pyrimidine dimers and (6-4)pyrimidine pyrimidones. Here we report that the UV-sensitive S. pombe rad12-502 mutant lacks SPDE activity. In addition, extracts prepared from the rad12-502 mutant are deficient in DNA excision repair, as demonstrated in an in vitro excision repair assay. DNA repair activity was restored to wild-type levels in extracts prepared from rad12-502 cells by the addition of partially purified SPDE to in vitro repair reaction mixtures. When the rad12-502 mutant was crossed with the NER rad13-A mutant, the resulting double mutant was much more sensitive to UV radiation than either single mutant, demonstrating that the rad12 gene product functions in a DNA repair pathway distinct from NER. These data directly link SPDE to this alternative excision repair process. We propose that the SPDE-dependent DNA repair pathway is the second DNA excision repair process present in S. pombe.  相似文献   

19.
The protein products of several rad checkpoint genes of Schizosaccharomyces pombe (rad1+, rad3+, rad9+, rad17+, rad26+, and hus1+) play crucial roles in sensing changes in DNA structure, and several function in the maintenance of telomeres. When the mammalian homologue of S. pombe Rad9 was inactivated, increases in chromosome end-to-end associations and frequency of telomere loss were observed. This telomere instability correlated with enhanced S- and G2-phase-specific cell killing, delayed kinetics of gamma-H2AX focus appearance and disappearance, and reduced chromosomal repair after ionizing radiation (IR) exposure, suggesting that Rad9 plays a role in cell cycle phase-specific DNA damage repair. Furthermore, mammalian Rad9 interacted with Rad51, and inactivation of mammalian Rad9 also resulted in decreased homologous recombinational (HR) repair, which occurs predominantly in the S and G2 phases of the cell cycle. Together, these findings provide evidence of roles for mammalian Rad9 in telomere stability and HR repair as a mechanism for promoting cell survival after IR exposure.  相似文献   

20.
The Schizosaccharomyces pombe homologue of Mre11, Rad32, is required for repair of UV- and ionising radiation-induced DNA damage and meiotic recombination. In this study we have investigated the role of Rad32 and other DNA damage response proteins in non-homologous end joining (NHEJ) and telomere length maintenance in S.pombe. We show that NHEJ in S.pombe occurs by an error-prone mechanism, in contrast to the accurate repair observed in Saccharomyces cerevisiae. Deletion of the rad32 gene results in a modest reduction in NHEJ activity and the remaining repair events that occur are accurate. Mutations in two of the phosphoesterase motifs in Rad32 have no effect on the efficiency or accuracy of end joining, suggesting that the role of Rad32 protein may be to recruit another nuclease(s) for processing during the end joining reaction. We also analysed NHEJ in other DNA damage response mutants and showed that the checkpoint mutant rad3-d and two recombination mutants defective in rhp51 and rhp54 (homologues of S.cerevisiae RAD51 and RAD54, respectively) are not affected. However disruption of rad22, rqh1 and rhp9 / crb2 (homologues of the S.cerevisiae RAD52, SGS1 and RAD9 genes) resulted in increased NHEJ activity. Telomere lengths in the rad32, rhp9 and rqh1 null alleles were reduced to varying extents intermediate between the lengths observed in wild-type and rad3 null cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号