首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Abstract  1. Due to its effects on the phenotypic and genotypic expression of life-history traits, density-dependent competition is an important factor regulating the growth of populations. Specifically for insects, density-dependent competition among juveniles is often associated with increased juvenile mortality, delayed maturity, and reduced adult size.
2. The aim of the work reported here was to test whether the established phenotypic effects of density-dependent competition on life-history traits could be reproduced in an experimental design requiring a minimal number of individuals. Larvae of the mosquito Aedes aegypti were reared at densities of one, two, or three individuals per standard Drosophila vial and in six different conditions of larval food availability. This design required relatively few individuals per independent replicate and included a control treatment where individuals reared at a density of one larva per vial experienced no density-dependent interactions with other larvae.
3. Increased larval densities or reduced food availability led to increased larval mortality, delayed pupation, and the emergence of smaller adults that starved to death in a shorter time (indicating emergence with fewer nutritional reserves).
4. Female mosquitoes were relatively larger than males (as measured by wing length) but males tended to survive for longer. These differences increased as larval food availability increased, indicating the relative importance of these two traits for the fitness of each sex. The role of nutritional reserves for the reproductive success of males was highlighted in particular.
5. This minimalist approach may provide a useful model for investigating the effects of density-dependent competition on insect life-history traits.  相似文献   

2.
Abstract. 1. Hypotheses about declining populations of container-inhabiting Aedes mosquitoes following the invasion by additional species were tested.
2. The larval competition hypothesis was studied experimentally in pure and mixed cultures of Aedes aegypti (L.), A.albopictus (Skuse) and A.triseriatus (Say). The experiments used decomposing leaf litter in the laboratory, as opposed to most previous research which used non-natural food.
3. Resistance to starvation is introduced as a new measure of larval performance and competitiveness. The hypothesis is that more successful larvae store larger energy reserves and resist the lack of food longer.
4. Contrary to previous research showing better performance of A.aegypti in mixed cultures, A.albopictus developed faster and had greater survival when natural food was used.
5. Resistance to starvation was greater in the better performing species (i.e. A.aegypti with non-natural food and A.albopictus with leaf litter). Oxygen consumption by starved larvae was similar in the three container species, and in the ground-water mosquito, A.taeniorhynchus (Wied.), whose resistance to starvation was comparatively very low.  相似文献   

3.
Abstract 1. In animals with a complex life cycle, larval stressors may carry over to the adult stage. Carry‐over effects not mediated through age and size at metamorphosis have rarely been studied. The present study focuses on the poorly documented immune costs of short‐term food stress both in the larval stage and after metamorphosis in the adult stage. 2. The present study quantified immune function [number of haemocytes, activity of prophenoloxidase (proPO) and phenoloxidase (PO)] in an experiment where larvae of the damselfly Lestes viridis were exposed to a transient starvation period. 3. Directly after starvation, immune variables were reduced in starved larvae. Levels of proPO and PO remained low after starvation, even after metamorphosis. In contrast, haemocyte numbers were fully compensated by the end of the larval stage, yet were lower in previously starved animals after metamorphosis. This can be explained as a cost of the observed compensatory growth after starvation. Focusing only on potential costs of larval stressors within the larval stage may therefore be misleading. 4. The here‐identified immunological cost in the adult stage of larval short‐term food stress and associated compensatory growth strongly indicates that physiological costs may explain hidden carry‐over effects bridging metamorphosis. This adds to the increasing awareness that the larval and adult stages in animals with a complex life cycle should be jointly studied, as trade‐offs may span metamorphosis.  相似文献   

4.
Body size as an estimator of production costs in a solitary bee   总被引:3,自引:0,他引:3  
Abstract 1. Body weight is often used as an estimator of production costs in aculeate Hymenoptera; however, due to differences between sexes in metabolic rates and water content, conversion of provision weight to body weight may differ between males and females. As a result, the cost of producing female progeny may often have been overestimated.
2. Provision weight and body weight loss throughout development were measured in a solitary bee, Osmia cornuta (Latreille), to detect potential differences between sexes in food weight/body weight conversion.
3. Male O. cornuta invest a larger proportion of larval weight in cocoon spinning, and presumably have higher metabolic rates than females during the larval period; however, this is compensated by a slightly longer larval period in females.
4. Overall, body weight loss throughout the life cycle does not differ significantly between sexes. As a result, cost production ratios calculated from provision weights and from adult body weights are almost identical.
5. The validity of other weight (cocoon, faeces) and linear (head width, intertegular span, wing length, cocoon length, and cell length) measures as estimators of production costs is also discussed.
6. Valid estimators of production costs vary across species due to differences in sex weight ratio, cocoon shape, provision size in reference to cell size, and adult body size.  相似文献   

5.
Abstract.  1. An important constraint upon life-history evolution in parasitoids is the limit imposed by body size on allocation of limited metabolic resources to different fitness-related physiological functions such as reproduction and survival.
2. The influence of adult nutrition on reproductive and maintenance variables was studied in the synovigenic ectoparasitoid Mastrus ridibundus , and it was determined whether resource allocation to these different functions depends on body size.
3. Over the course of adult life there was a positive relationship between body size and the number of mature eggs in adult females both in the presence and absence of food. However, only in the presence of food did egg maturation rates increase significantly with body size. Starved wasps produced significantly smaller eggs than fed ones, which has not been documented before. Moreover, starved wasps produced fewer offspring than fed wasps, and attacked fewer hosts.
4. The availability of food had a major effect on longevity, with fed females living about 10 times longer than starved ones. There was also a positive relationship between body size and longevity. In starved wasps, this relationship was the same both in the presence and absence of hosts, but in fed wasps there was a positive relationship between body size and longevity in the absence of hosts only. Allocation to initial eggs relative to lifetime progeny production did not decline with body size.
5. The data reveal that in M. ridibundus the trade-off between maintenance and reproduction varies with life expectancy.  相似文献   

6.
Abstract. 1. Competition within and between the larval instars of the yellow fever mosquito, Aedes aegypti , can be measured by its effect on stage duration. In a series of laboratory experiments the relative importance of chemical interference and food exploitation in mediating competition between first and fourth instar larvae was investigated.
2. In contrast to the results of three previous studies, I found no evidence that a chemical growth retardant played any part in greatly prolonging the stage durations of larvae in both age classes.
3. When competition between the two age classes became important, the relative increase in stage duration wasgreater for first instar larvae than for fourth instar larvae. This result can be reproduced with Gilpin & McClelland's (1979) model of competition by food exploitation alone, providing the range of available food particle size is assumed to be an increasing function of age. An additional, but less important, refinement makes the conversion efficiency of food into larval biomass a decreasing function of age.  相似文献   

7.
Abstract.  1. In phytophagous insects, life-history traits mainly depend on host plant range. Substantial longevity, high fecundity and larval competition are the major traits of polyphagous Tephritidae while species with a restricted host range generally exhibit a lower longevity and fecundity as well as mechanisms to avoid larval competition. Our aim in this study was to investigate the life history of an oligophagous species, the tomato fruit fly, Neoceratitis cyanescens (Bezzi).
2. We determined life tables under laboratory conditions in order to calculate the main demographic parameters of N. cyanescens and studied the influence of larval and adult diet on life-history traits.
3. The mean longevity of N. cyanescens females was 40 days. There was a strong synchronisation of female maturity. Oviposition showed an early peak at 9–13 days after a short pre-oviposition period (6 days). The absence of proteins in the adult diet both delayed ovarian maturation and decreased female fecundity. In addition, females originating from tomato fruits produced significantly more eggs than females originating from bugweed or black nightshade, showing that even the larval host plant may strongly affect the subsequent fecundity of adult females.
4. The traits of N. cyanescens are then discussed in the light of those documented for polyphagous and monophagous tephritids. Neoceratitis cyanescens displayed attributes intermediate between those of polyphagous and monophagous tephritids. Its smaller clutch size compared with polyphagous species and its specialisation on the Solanaceae family whose fruits contain toxic compounds may help in reducing intra- and inter-specific competition, respectively.  相似文献   

8.
Abstract. 1. Larval rearing densities of Hemipyrellia ligurriens (Wiedemann) (Diptera: Calliphoridae) in standardized carrion were manipulated in order to investigate changes in life-history parameters in response to larval competition for food.
2. Competition was of the typical scramble type. Survivorship remained high at densities up to 32 larvae g liver-1 but decreased rapidly as larval density increased further.
3. Emergent adults were undersized with reduced fecundity and longevity. Variations in adult body size apparently reduced the effects of competition on larval mortality.
4. Females of dry weight corresponding to only 10.4% of the potential maximum emerged at the highest rearing densities of 128 larvae g liver-1. However, these females had a nearly four-fold increase in reproductive investment (per unit weight) when compared to the largest individuals.
5. The duration of larval development declined when competition was intense (i.e. at high larval densities).
6. The short adult life of H.ligurriens, combined with the unpredictability of larval habitat availability, may reduce the value of long-range dispersal so that females 'do better' by maintaining reproductive investment despite a concomitant decline in dispersal ability.  相似文献   

9.
1. Recently, a small predatory beetle, Trechisibus antarcticus (Carabidae), was accidentally introduced onto the island of South Georgia, sub-Antarctic.
2. From the presumed site of introduction the beetle is invading the coastal lowland area, building up high densities locally in the tussock-forming grass Parodiochloa flabellata .
3. In the coastal area the endemic detritivorous/herbivorous beetle Hydromedion sparsutum (Perimylopidae) is common, especially in and beneath the tussocks.
4. The first three, out of six, larval instars of H. sparsutum are easily taken prey by the carabid.
5. In sites colonized by the carabid, total abundance and the ratio between larval and adult numbers of H. sparsutum are far lower, and its adult body size clearly larger, than in comparable sites where the carabid is absent.
6. Two hypotheses are proposed for explaining the increase in adult body size of H. sparsutum : (i) the increase is a direct effect of predation: selection by the predator favours large hatchlings and/or larvae with a high growth rate; and (ii) the increase is an indirect effect of predation: by lowering the density of H. sparsutum , predation has increased its per capita food supply, enabling a higher growth rate and a larger adult body size.
7. A food addition experiment in a carabid-free site showed availability of high quality food to be insufficient for sustaining the initial larval population.
8. In the laboratory, females from the predator-infested sites produced larger eggs and hatchlings than females from the carabid-free sites, but mass specific growth rates of the larvae were not higher.
9. Field and laboratory data give stronger support to the food hypothesis than to the size selectivity hypothesis.  相似文献   

10.
Drosophila melanogaster populations subjected to extreme larval crowding (CU lines) in our laboratory have evolved higher larval feeding rates than their corresponding controls (UU lines). It has been suggested that this genetically based behavior may involve an energetic cost, which precludes natural selection in a density-regulated population to simultaneously maximize food acquisition and food conversion into biomass. If true, this stands against some basic predictions of the general theory of density-dependent natural selection. Here we investigate the evolutionary consequences of density-dependent natural selection on growth rate and body size in D. melanogaster. The CU populations showed a higher growth rate during the postcritical period of larval life than UU populations, but the sustained differences in weight did not translate into the adult stage. The simplest explanation for these findings (that natural selection in a crowded larval environment favors a faster food acquisition for the individual to attain the same final body size in a shorter period of time) was tested and rejected by looking at the larva-to-adult development times. Larvae of CU populations starved for different periods of time develop into comparatively smaller adults, suggesting that food seeking behavior in a food depleted environment carries a higher cost to these larvae than to their UU counterparts. The results have important implications for understanding the evolution of body size in natural populations of Drosophila, and stand against some widespread beliefs that body size may represent a compromise between the conflicting effects of genetic variation in larval and adult performance.  相似文献   

11.
Abstract .1. Adults of Aquarius paludum inhabit both temporary and permanent water surfaces; Gerris latiabdominis lives only in temporary habitats. To clarify whether adults of both species stay in position or fly when habitats dry up, overwintered adults of A. paludum and G. latiabdominis collected in spring were reared under one of the following four conditions: (A) on water with sufficient food, (B) on water, starved, (C) on wet paper with sufficient food, (D) on wet paper, starved. All rearings were at LD 15.5:8.5 h, 20 ± 2 °C, resembling natural conditions for April to June.
2. Females of A. paludum in group C had lower fecundity than the control group A and some stopped laying eggs. When a water surface was restored, females that had entered reproductive diapause began to lay eggs again. In contrast, females of G. latiabdominis continued to lay eggs even when reared on damp paper.
3. Adults of A. paludum lived longer and adopted diapause posture with high frequency when starved and reared without a water surface. There were, however, no significant differences in the longevity or in the number of adults showing diapause posture between groups A and D of G. latiabdominis.
4. Females of A. paludum collected in the middle of May had more mature oocytes (mean: 20.8) than females of G. latiabdominis (mean: 8.0), and most had histolysed their indirect flight muscles; most females of G. latiabdominis had retained their flight muscles and flew readily.
5. When water surfaces dry, with food shortage, adults of A. paludum may survive in place for a relatively long time until the water surface returns. Adults of G. latiabdominis may fly to other water surfaces and reproduce without delay.  相似文献   

12.
1. Crowding `info-chemicals', metabolites released into the environment that act as signals to conspecifics as well as other organisms, have often been shown to cause phenotypic plasticity in cladoceran life-history traits including morphology, reproductive strategy and sex induction. Effects on population demography and diversity, however, have not been examined directly.
2. Replicate laboratory populations of the zooplankter, Daphnia magna, were started with 250 juveniles and allowed to develop for 8 weeks in 10 L flow-through aquaria with food levels of 1 mg CL–1. Two crowded water treatments from different clonal sources were compared with untreated water as a control.
3. The presence of crowding chemicals affected initial population structure, through reduction in parthenogenetic female body lengths, brood sizes and juvenile densities. However, the timing of population density maxima and subsequent population structure, clonal composition and diversity were similar among all treatments.
4. Clonal richness remained slightly higher in untreated populations because of increased prevalence of rare clones.
5. Exploitation competition had greater impact on population structure than the relative concentration of crowding chemicals, indicating that density dependent effects were mediated primarily by competition for common resources.
6. Crowding info-chemicals may play a greater role in community structure than in single species population structure because of taxonomic diversity in species' response that may be unrelated to the source species density.  相似文献   

13.
Abstract.  1. Pollen is considered to be an important dietary component for many species of flower-feeding herbivores. Its influence on oviposition site selection by the pollen beetle Meligethes aeneus , and on the development of its larvae was investigated.
2. The effects of pollen presence and absence on adult, egg, and larval incidence in the field, and on larval development in the laboratory were compared through the use of Synergy, a composite hybrid oilseed rape Brassica napus variety comprising male-fertile (with pollen) and male-sterile (without pollen) plants.
3. In the field, adult females were more abundant on male-fertile plants during flowering, and a greater proportion of male-fertile than male-sterile buds were accepted for oviposition. These data indicate a possible role of pollen in oviposition site selection by female pollen beetles.
4. The numbers of first instar larvae on the two plant lines did not differ; however, more second instars were found on male-fertile than on male-sterile flowers. This suggests a greater larval survival on male-fertile plants, possibly due to the more readily available food resources and better nutrition afforded by the presence of pollen.
5. Laboratory experiments confirmed that a diet which included pollen improved survival to adulthood and resulted in heavier pupae and adults; however, pollen was not obligatory for larval survival and development.
6. The pollen beetle, previously thought to be an obligate pollen feeder, is therefore more generalist in its requirements for development. These findings may relate to the nutritional and behavioural ecology of other flower-feeding herbivores.  相似文献   

14.
Abstract.  1. In insects, larval diet can have a major impact on development, survival, and reproductive success. However, resource availability at the adult phase of the life cycle is also likely to have strong effects in species where there is an extended period of sexual maturation following adult eclosion.
2. The effect of diet on the survival and reproductive success of the lekking Hawaiian fruit fly, Drosophila grimshawi , was explored. Two generations of emerging adults were exposed to one of two feeding regimes: 'constant' and 'varied' (corresponding to food 'each day' or 'every other day' respectively). The impact of resource availability on survival and reproductive success in each generation was then investigated.
3. The probability of survival to 5 weeks old was higher for individuals fed a constant diet than individuals fed a varied diet, but was comparable for males and females.
4. There was a significant maternal effect on offspring survival. Offspring whose mothers were reared on a constant feeding regime had higher survival than offspring whose mothers were reared on a varied diet.
5. There was no relationship between feeding regime and the quantity of pheromones deposited by males (a measure of male reproductive investment); however F2 sons were more likely to deposit pheromones and deposited a larger quantity of pheromone than their F1 sires. The number and sex ratio of offspring (a measure of female reproductive effort) emerging from the F1 generation was unrelated to maternal or paternal feeding regime.
6. The implications of variation in the foraging environment for mate choice in D. grimshawi are discussed.  相似文献   

15.
Mechanisms regulating zooplankton populations in a high-mountain lake   总被引:3,自引:0,他引:3  
SUMMARY 1. We studied the seasonal succession of phyto- and zooplankton and the potential impact of predation by salmonids on zooplankton population dynamics in a high-mountain Swiss lake.
2. A comparison of patterns in the abundance, body length, fecundity and age structure in the Daphnia galeata population strongly suggests that trout predation had little impact on the population and was not the cause for a decline in summer.
3. The dominance in the lake of adult trout that feed mainly on benthic prey may buffer the effect of predation on the larger zooplankton. Further, the relatively high amount of phytoplankton after spring thaw could be important for sustaining the Daphnia population under moderate fish predation.
4. Partial correlation analyses proved circumstantial evidence for both exploitative and interference competition between some zooplankton taxa. D. galeata depressed performance of other plankton species through exploitative competition.
5. Our study shows that the impact of fish on zooplankton in high-mountain lakes depends strongly on food web structure and trophic state of the lake. Where fish predation is weak, invertebrate predation combined with competition for food may be responsible for the dominance of large-bodied zooplankton species.  相似文献   

16.
1. In some situations, individuals surviving in environments where predation is intense can grow faster because the benefits of release from intraspecific competition outweigh costs associated with anti-predator responses. Whether these 'thinning' effects of predation occur in detritus-based food webs where resource renewal occurs independently of consumption by consumers was studied. We investigated how effects of predatory brown trout ( Salmo trutta ) on the larvae of the detritivorous stream caddisfly, Zelandopsyche ingens , influenced the size and fecundity of the caddisfly adults.
2. Trout substantially reduced the abundance of Z. ingens larvae, but adult male and female Z. ingens were significantly larger in trout streams compared to fishless streams. Females in trout streams had 33% more eggs than fishless stream females, and egg sizes were not significantly different. In mesocosms, Z. ingens larvae in low density treatments reflecting trout stream abundances grew significantly faster than larvae in high density treatments that were characteristic of fishless stream abundances. Non-lethal trout presence did not influence case building behaviour, feeding rates or growth or Z. ingens larvae, indicating non-lethal effects of predators were negligible.
3. Increased adult size and fecundity associated with trout stream individuals were probably a result of predator thinning of larval density indirectly releasing surviving Z. ingens from intraspecific competition. Thus, predator thinning did influence interactions between larvae in this detritus-based food web as larval growth was strongly density-dependent. However, extrapolating the total number of eggs potentially produced indicates the increased fecundity of females in trout streams would not compensate for losses of larvae to trout predation.  相似文献   

17.
Availability of adequate nutrition and (rearing) density are among the most important factors affecting growth, development and reproduction in animals. In holometabolous insects diets and energetic needs change between life stages, with storing of larval resources, adult feeding and reproduction being linked strategies. Nevertheless, studies investigating nutritional (and density) effects across metamorphic boundaries are largely lacking. We aim at disentangling the functional basis of reproductive patterns by independently manipulating larval and adult (1) density and (2) access to food, respectively, in the tropical butterfly, Bicyclus anynana. (1) A high larval rearing density had, contrary to common wisdom, very little impact on body size, but reduced larval development time through increased growth rates. The latter is thought to be an adaptation to high densities, driven by the risk of larval food resources becoming exhausted before reaching metamorphosis. Larval density and male company during oviposition (i.e. adult density) had no detectable effects on female reproduction. (2) Larval food stress prolonged larval development time and reduced larval growth rate, body size, fecundity and reproductive investment. Detrimental effects on female reproduction were mediated through a reduction in body size. Additional negative effects of adult food stress on fecundity were largely confined to females being fed as larvae ad libitum, while those being previously starved showed reduced performance regardless of adult income. Effects on egg size were inconsistent and, overall, marginal. Our results show that restricted food access in different developmental stages may set different limits to reproduction, either posed by shortage of larval‐derived storage reserves (i.e. nitrogenous compounds) or adult income (i.e. carbohydrates). Thus, one should be cautious when stating that one or the other type of nutrients is ultimately limiting to reproduction. Rather, our findings highlight the importance of resource congruence and of considering both, larval‐ and adult‐derived resources for reproduction.  相似文献   

18.
Achieving high sexual size dimorphism in insects: females add instars   总被引:2,自引:0,他引:2  
Abstract.  1. In arthropods, the evolution of sexual size dimorphism (SSD) may be constrained by a physiological limit on growth within each particular larval instar. A high SSD could, however, be attained if the larvae of the larger sex pass through a higher number of larval instars.
2. Based on a survey of published case studies, the present review shows that sex-related difference in the number of instars is a widespread phenomenon among insects. In the great majority of species with a sexually dimorphic instar number, females develop through a higher number of instars than males.
3. Female-biased sexual dimorphism in final sizes in species with sexually dimorphic instar number was found to considerably exceed a previously estimated median value of SSD for insects in general. This suggests a causal connection between high female-biased SSD, and additional instars in females. Adding an extra instar to larval development allows an insect to increase its adult size at the expense of prolonged larval development.
4. As in the case of additional instars, SSD is fully formed late in ontogeny, larval growth schedules and imaginal sizes can be optimised independently. No conflict between selective pressures operating in juvenile and adult stages is therefore expected.
5. In most species considered, the number of instars also varied within the sexes. Phenotypic plasticity in instar number may thus be a precondition for a sexual difference in instar number to evolve.  相似文献   

19.
Abstract.  1. For insect herbivores the quality of the larval host plant is a key determinant of their fitness. Only little attention, however, has been given to the effects of plants on mating success of males and its consequence for the reproductive output of their mates. In addition, almost all the studies that have investigated the influence of host plants on herbivore fitness components have been done in the laboratory, and less is known of these effects in natural conditions.
2. Using the phytophagous European grapevine moth ( Lobesia botrana Den. & Schiff., Lepidoptera: Tortricidae), we tested the influence of grape cultivars as larval food on the probability of acquiring a mate for both sexes, and on the reproductive output of females and males.
3. Results from this study stress the importance of larval host plants on the reproductive success of both sexes. Larval diet differentially affected mating success and reproductive output of male and female moths. Fecundity, egg size, and egg hatchability were significantly different when larvae were fed on particular grape cultivars.
4. A given cultivar that is of poor quality for females is generally also of poor quality for males. A cultivar, however, could be suitable for females but not for males and vice-versa. Apparently, the nutrients required for adult reproduction are not necessarily the same for males and females.
5. The important conclusion from this study is that evaluating the differential effect of host-plant species on traits associated with reproductive success of herbivores requires that the effects on both sexes be taken into account.  相似文献   

20.
Abstract.  1. Life-history theory predicts that organisms should speed up development in response to time constraints. However, acceleration of development carries energetic costs that have to be compensated, e.g. by an increase in foraging rate. For the wing dimorphic water strider Gerris lacustris (L.), the hypothesis was tested that the adjustment of development to time constraints is limited by the availability of food resources.
2. Six cohorts of larvae hatched increasingly late in the season were reared under two feeding regimes. For each cohort and experimental group the physiological time (in degree-days) of larval development was estimated.
3. In both high- and low-food groups there was a significant reduction of physiological time for development towards the end of the season. Furthermore, within cohorts, physiological development time was always lower in the high-food group than in the low-food group. However, there was no significant interaction effect between food treatment and cohort.
4. The results demonstrate that G. lacustris has the flexibility to adjust development to time constraints. In addition, 20% of the 'low-food individuals' developed into the short-winged morph while all of the 'high-food individuals' became long-winged. The limitation of food may thus lead to a reduced allocation of energy into the development of the flight apparatus. This may explain the strong increase in short-wingedness at the end of the season in natural populations, which are highly food limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号