首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nearly 50 species of the marine gastropod genus Conus are restricted to the Cape Verde archipelago. This unusual concentration of endemics within a single set of oceanic islands is extremely uncharacteristic of marine taxa. Here we used phylogenetic analyses of 90 Conus species, including 30 endemics from Cape Verde, to reveal the relationships and origins of the endemic Cape Verde Conus. Results show that these species group in two distinct clades and represent a marine species flock that is restricted to a very narrowly confined geographical area. Species' originations occurred in exceptionally limited parts of the archipelago and in some cases radiations took place solely within single islands. Finally, comparison of levels of divergence between Cape Verde endemics and other Conus species suggests that the radiation of Conus in Cape Verde occurred during the last few million years.  相似文献   

2.
Likelihood methods for detecting temporal shifts in diversification rates   总被引:8,自引:0,他引:8  
Maximum likelihood is a potentially powerful approach for investigating the tempo of diversification using molecular phylogenetic data. Likelihood methods distinguish between rate-constant and rate-variable models of diversification by fitting birth-death models to phylogenetic data. Because model selection in this context is a test of the null hypothesis that diversification rates have been constant over time, strategies for selecting best-fit models must minimize Type I error rates while retaining power to detect rate variation when it is present. Here I examine model selection, parameter estimation, and power to reject the null hypothesis using likelihood models based on the birth-death process. The Akaike information criterion (AIC) has often been used to select among diversification models; however, I find that selecting models based on the lowest AIC score leads to a dramatic inflation of the Type I error rate. When appropriately corrected to reduce Type I error rates, the birth-death likelihood approach performs as well or better than the widely used gamma statistic, at least when diversification rates have shifted abruptly over time. Analyses of datasets simulated under a range of rate-variable diversification scenarios indicate that the birth-death likelihood method has much greater power to detect variation in diversification rates when extinction is present. Furthermore, this method appears to be the only approach available that can distinguish between a temporal increase in diversification rates and a rate-constant model with nonzero extinction. I illustrate use of the method by analyzing a published phylogeny for Australian agamid lizards.  相似文献   

3.
MacroCAIC: revealing correlates of species richness by comparative analysis   总被引:1,自引:0,他引:1  
Abstract. Studies of species richness have been hampered by the use of methods that fail to account for phylogenetic non-independence of character states. MacroCAIC is a computer program that extends the method of phylogenetically independent contrasts to encompass species-richness data. It examines user-selected characters for correlation with species richness, thus allowing clearer identification of the factors driving large-scale patterns of diversity.  相似文献   

4.
Phenotypic plasticity has been hypothesized to play a central role in the evolution of phenotypic diversity across species (West‐Eberhard 2003 ). Through ‘genetic assimilation’, phenotypes that are initially environmentally induced within species become genetically fixed over evolutionary time. While genetic assimilation has been shown to occur in both the laboratory and the field (Waddington 1953 ; Aubret & Shine 2009 ), it remains to be shown whether it can account for broad patterns of phenotypic diversity across entire adaptive radiations. Furthermore, our ignorance of the underlying molecular mechanisms has hampered our ability to incorporate phenotypic plasticity into models of evolutionary processes. In this issue of Molecular Ecology, Parsons et al. ( 2016 ) take a significant step in filling these conceptual gaps making use of cichlid fishes as a powerful study system. Cichlid jaw and skull morphology show adaptive, plastic changes in response to early dietary experiences (Fig. 1). In this research, Parsons et al. ( 2016 ) first show that the direction of phenotypic plasticity aligns with the major axis of phenotypic divergence across species. They then dissect the underlying genetic architecture of this plasticity, showing that it is specific to the developmental environment and implicating the patched locus in genetic assimilation (i.e. a reduction in the environmental sensitivity of that locus in the derived species).  相似文献   

5.
Aim At broad geographical scales, species richness is a product of three basic processes: speciation, extinction and migration. However, determining which of these processes predominates is a major challenge. Whilst palaeontological studies can provide information on speciation and extinction rates, data are frequently lacking. Here we use a recent dated phylogenetic tree of mammals to explore the relative importance of these three processes in structuring present‐day richness gradients. Location The global terrestrial biosphere. Methods We combine macroecological data with phylogenetic methods more typically used in community ecology to describe the phylogenetic history of regional faunas. Using simulations, we explore two simple phylogenetic metrics, the mean and variance in the pairwise distances between taxa, and describe their relationship to phylogenetic tree topology. We then use these two metrics to characterize the evolutionary relationships among mammal species assemblages across the terrestrial biome. Results We show that the mean and variance in the pairwise distances describe phylogenetic tree topology well, but are less sensitive to phylogenetic uncertainty than more direct measures of tree shape. We find the phylogeny for South American mammals is imbalanced and ‘stemmy’ (long branches towards the root), consistent with recent diversification within evolutionarily disparate lineages. In contrast, the phylogeny for African mammals is balanced and ‘tippy’ (long branches towards the tips), more consistent with the slow accumulation of diversity over long times, reflecting the Old World origin of many mammal clades. Main conclusions We show that phylogeny can accurately capture biogeographical processes operating at broad spatial scales and over long time periods. Our results support inferences from the fossil record – that the New World tropics are a diversity cradle whereas the Old World tropics are a museum of old diversity.  相似文献   

6.
The characiform fishes of the Neotropics and Africa radiated remarkably in ecomorphology, but the macroevolutionary processes responsible for their biodiversity remain unexplored, and the degree to which their continental diversification parallels classic adaptive radiations remains untested. We reconstruct their diversification using a new fossil‐calibrated molecular phylogeny, dietary information, and geometric morphometrics. Though body shape diversified early in a manner consistent with an ancient continental adaptive radiation, trophic shifts did not always coincide with shape changes. With the notable exception of piscivores, lineages that converged in diet did not converge closely in body shape. Shifts in habitat or other variables likely influenced body shape evolution in addition to changes in diet, and the clade's history departs from many classic adaptive radiations in lakes or on islands, in which trophic convergence drives morphological convergence. The contrast between the Neotropical radiation's exhaustive exploration of morphospace and the more restrained diversification in Africa suggests a major role for contingency in characiform evolution, with the presence of cypriniform competitors in the Old World, but not the New, providing one possible explanation. Our results depict the clearest ecomorphological reconstruction to date for Characiformes and set the stage for studies further elucidating the processes underlying its diversification.  相似文献   

7.
Abstract Pleurocarpous mosses, characterized by lateral female gametangia and highly branched, interwoven stems, comprise three orders and some 5000 species, or almost half of all moss diversity. Recent phylogenetic analyses resolve the Ptychomniales as sister to the Hypnales plus Hookeriales. Species richness is highly asymmetric with approximately 100 Ptychomniales, 750 Hookeriales, and 4400 Hypnales. Chloroplast DNA (cpDNA) sequences were obtained to compare partitioning of molecular diversity among the orders with estimates of species richness, and to test the hypothesis that either the Hookeriales or Hypnales underwent a period (or periods) of exceptionally rapid diversification. Levels of biodiversity were quantified using explicitly historical "phylogenetic diversity" and non-historical estimates of standing sequence diversity. Diversification rates were visualized using lineage-through-time (LTT) plots, and statistical tests of alternative diversification models were performed using the methods of Paradis (1997). The effects of incomplete sampling on the shape of LTT plots and performance of statistical tests were investigated using simulated phylogenies with incomplete sampling. Despite a much larger number of accepted species, the Hypnales contain lower levels of (cpDNA) biodiversity than their sister group, the Hookeriales, based on all molecular measures. Simulations confirm previous results that incomplete sampling yields diversification patterns that appear to reflect a decreasing rate through time, even when the true phylogenies were simulated with constant rates. Comparisons between simulated results and empirical data indicate that a constant rate of diversification cannot be rejected for the Hookeriales. The Hypnales, however, appear to have undergone a period of exceptionally rapid diversification for the earliest 20% of their history.  相似文献   

8.
不同生物类群包含的物种数目常存在巨大差异,这是生态学和生物学研究中普遍观察到的现象。然而,这一现象产生的原因仍然是未解之谜。从宏观进化的角度,进化时间假说和多样化速率假说是两个比较流行的假说。进化时间假说认为类群的演化时间越长,积累的物种丰富度越高;而多样化速率假说认为类群的净多样化速率越快,则其物种丰富度越高。为验证这两个假说,该文以一棵包含1 539个物种化石定年的虎耳草目系统发育树为基础,通过宏观进化分析获取了虎耳草目内15个科的物种形成和灭绝速率,并计算了每个科的平均多样化速率。结果表明:(1)虎耳草目的物种多样化速率有着增加的趋势,并且多样化速率的增加主要出现在温带和高山类群,如茶藨子科、景天科和芍药科等。(2)采用系统发育广义最小二乘模型(PGLS)和线性回归模型(LM)结果表明,虎耳草目15个科的物种丰富度与科的分化时间和科内物种的最近共同祖先年龄都没有显著相关关系,而与净多样化速率显著正相关(R2 =0.380,P<0.05)。该研究支持了多样化速率假说,认为不同科的净多样化速率的差异是导致虎耳草目科间物种数目差异的主要原因之一。全球气候变冷...  相似文献   

9.
Abstract.— Explaining the uneven distribution of species among lineages is one of the oldest questions in evolution. Proposed correlations between biological traits and species diversity are routinely tested by making comparisons between phylogenetic sister clades. Several recent studies have used nested sister-clade comparisons to test hypotheses linking continuously varying traits, such as body size, with diversity. Evaluating the findings of these studies is complicated because they differ in the index of species richness difference used, the way in which trait differences were treated, and the statistical tests employed. In this paper, we use simulations to compare the performance of four species richness indices, two choices about the branch lengths used to estimate trait values for internal nodes and two statistical tests under a range of models of clade growth and character evolution. All four indices returned appropriate Type I error rates when the assumptions of the method were met and when branch lengths were set proportional to time. Only two of the indices were robust to the different evolutionary models and to different choices of branch lengths and statistical tests. These robust indices had comparable power under one nonnull scenario. Regression through the origin was consistently more powerful than the t -test, and the choice of branch lengths exerts a strong effect on both the validity and power. In the light of our simulations, we re-evaluate the findings of those who have previously used nested comparisons in the context of species richness. We provide a set of simple guidelines to maximize the performance of phylogenetically nested comparisons in tests of putative correlates of species richness.  相似文献   

10.
The tempo and mode of species diversification and phenotypic evolution vary widely across the tree of life, yet the relationship between these processes is poorly known. Previous tests of the relationship between rates of phenotypic evolution and rates of species diversification have assumed that species richness increases continuously through time. If this assumption is violated, simple phylogenetic estimates of net diversification rate may bear no relationship to processes that influence the distribution of species richness among clades. Here, we demonstrate that the variation in species richness among plethodontid salamander clades is unlikely to have resulted from simple time-dependent processes, leading to fundamentally different conclusions about the relationship between rates of phenotypic evolution and species diversification. Morphological evolutionary rates of both size and shape evolution are correlated with clade species richness, but are uncorrelated with simple estimators of net diversification that assume constancy of rates through time. This coupling between species diversification and phenotypic evolution is consistent with the hypothesis that clades with high rates of morphological trait evolution may diversify more than clades with low rates. Our results indicate that assumptions about underlying processes of diversity regulation have important consequences for interpreting macroevolutionary patterns.  相似文献   

11.
Climatic niche conservatism shapes patterns of diversity in many taxonomic groups, while ecological opportunity (EO) can trigger rapid speciation that is less constrained by the amount of time a lineage has occupied a given habitat. These two processes are well studied, but limited research has considered their joint and relative roles in shaping diversity patterns. We characterized climatic and biogeographic variables for 102 species of arvicoline rodents (Arvicolinae, Cricetidae), testing the effects of climatic niche conservatism and EO on arvicoline diversification as lineages transitioned between biogeographic regions. We found that the amount of time a lineage has occupied a precipitation niche is positively correlated with diversity along a precipitation gradient, suggesting climatic niche conservatism. In contrast, shift in diversification rate explained diversity patterns along a temperature gradient. Our results suggest that an indirect relationship exists between temperature and diversification that is associated with EO as arvicoline rodents colonized warm Palearctic environments. Climatic niche conservatism alone did not fully explain diversity patterns under density‐dependence, highlighting the additional importance of EO‐related processes in promoting the explosive radiation in arvicoline rodents and shaping diversity pattern among biogeographic regions and along climatic gradients.  相似文献   

12.
Statistical analysis of diversification with species traits   总被引:1,自引:0,他引:1  
Testing whether some species traits have a significant effect on diversification rates is central in the assessment of macroevolutionary theories. However, we still lack a powerful method to tackle this objective. I present a new method for the statistical analysis of diversification with species traits. The required data are observations of the traits on recent species, the phylogenetic tree of these species, and reconstructions of ancestral values of the traits. Several traits, either continuous or discrete, and in some cases their interactions, can be analyzed simultaneously. The parameters are estimated by the method of maximum likelihood. The statistical significance of the effects in a model can be tested with likelihood ratio tests. A simulation study showed that past random extinction events do not affect the Type I error rate of the tests, whereas statistical power is decreased, though some power is still kept if the effect of the simulated trait on speciation is strong. The use of the method is illustrated by the analysis of published data on primates. The analysis of these data showed that the apparent overall positive relationship between body mass and species diversity is actually an artifact due to a clade-specific effect. Within each clade the effect of body mass on speciation rate was in fact negative. The present method allows to take both effects (clade and body mass) into account simultaneously.  相似文献   

13.
Phylogenetic legacy and phylogenetic trends affect the ecology of species-except, apparently, for the width of their distribution. As a result, "macroecological" patterns of species distributions emerge constantly in phylogenetically very distinct species assemblages. The width of the global distribution of species, for instance, constantly correlates positively to the width of their regional distribution. However, such patterns primarily reflect the phylogenetically derived species that dominate most assemblages. Basal species, in contrast, might show different macroecological patterns. We tested the hypothesis that the correlation between global and regional distributions of species diminishes among the phylogenetically basal species. We considered central European higher plants and defined global distribution as the occupancy of global floristic zones, regional distribution as the grid occupancy in Eastern Germany, and phylogenetic position as the rank distance to tree base. We also took into account a number of confounding variables. We found that, across all lineages, the global/regional correlation diminished among basal species. We then reanalyzed 19 lineages separately and always found the same pattern. The pattern reflected both increases in global distributions and decreases in regional distributions among basal species. The results indicate that many basal species face a risk of global or at least regional extinction, but have escaped the downward spiral of mutually reinforcing extinction risks at multiple scales. We suggest that many basal species had much time to expand their global ranges but are presently displaced locally by more derived species. Overall, the study shows that macroecological patterns may not be static and universal, but may undergo macroevolutionary trends. Analyses of macroecological patterns across a phylogeny may thus provide insights into macroevolutionary processes.  相似文献   

14.
The phylogenetic relationship of Eurasian species of the Drosophila obscura species group remains ambiguous in spite of intensive analyses based on morphology, allozymes and DNA sequences. The present analysis based on sequence data for cytochrome oxidase subunit I (COI) and a-glycerophosphate dehydrogenase (Gpdh) suggests that the phylogenetic position of D. alpina is also ambiguous. These ambiguities have been considered to be attributable to rapid phyletic radiation in this group at an early stage of its evolution. Overwintering strategies are diversified among these species: D. alpina and D. subsihestris pass the winter in pupal diapause, D. bifasciata and D. obscura in reproductive diapause, and D. subobscura and D. guanche without entering diapause. This diversity may also suggest rapid radiation at an early phase of adaptations to temperate climates. On the other hand, adult tolerance of cold was closely related to overwintering strategy and distribution: D. obscura and D. bifasciata with reproductive diapause were very tolerant; D. alpina and D. subsilvestris which pass the winter in pupal diapause were less tolerant; D. subobscura having no diapause was moderately tolerant and D. guanche occurring in the Canary Islands was rather susceptible. Tolerance of high temperature at the preimaginal stages seemed to be also associated with overwintering strategy; i.e. lower in the species with pupal diapause than in those with reproductive diapause or without diapause mechanism.  相似文献   

15.
Species interactions lie at the heart of many theories of macroevolution, from adaptive radiation to the Red Queen. Although some theories describe the imprint that interactions will have over long timescales, we are still missing a comprehensive understanding of the effects of interactions on macroevolution. Current research shows strong evidence for the impact of interactions on macroevolutionary patterns of trait evolution and diversification, yet many macroevolutionary studies have only a tenuous relationship to ecological studies of interactions over shorter timescales. We review current research in this area, highlighting approaches that explicitly model species interactions and connect them to broad‐scale macroevolutionary patterns. We also suggest that progress has been made by taking an integrative interdisciplinary look at individual clades. We focus on African cichlids as a case study of how this approach can be fruitful. Overall, although the evidence for species interactions shaping macroevolution is strong, further work using integrative and model‐based approaches is needed to spur progress towards understanding the complex dynamics that structure communities over time and space.  相似文献   

16.
Understanding the origins of species richness patterns is a fundamental goal in ecology and evolutionary biology. Much research has focused on explaining two kinds of species richness patterns: (i) spatial species richness patterns (e.g. the latitudinal diversity gradient), and (ii) clade-based species richness patterns (e.g. the predominance of angiosperm species among plants). Here, I highlight a third kind of richness pattern: trait-based species richness (e.g. the number of species with each state of a character, such as diet or body size). Trait-based richness patterns are relevant to many topics in ecology and evolution, from ecosystem function to adaptive radiation to the paradox of sex. Although many studies have described particular trait-based richness patterns, the origins of these patterns remain far less understood, and trait-based richness has not been emphasised as a general category of richness patterns. Here, I describe a conceptual framework for how trait-based richness patterns arise compared to other richness patterns. A systematic review suggests that trait-based richness patterns are most often explained by when each state originates within a group (i.e. older states generally have higher richness), and not by differences in transition rates among states or faster diversification of species with certain states. This latter result contrasts with the widespread emphasis on diversification rates in species-richness research. I show that many recent studies of spatial richness patterns are actually studies of trait-based richness patterns, potentially confounding the causes of these patterns. Finally, I describe a plethora of unanswered questions related to trait-based richness patterns.  相似文献   

17.
Approximately 2 kb corresponding to different regions of the mtDNA of 14 different species of the obscura group of Drosophila have been sequenced. In spite of the uncertainties arising in the phylogenetic reconstruction due to a restrictive selection toward a high mtDNA A+T content, all the phylogenetic analysis carried out clearly indicate that the obscura group is formed by, at least, four well-defined lineages that would have appeared as the consequence of a rapid phyletic radiation. Two of the lineages correspond to monophyletic subgroups (i.e., afftnis and pseudoobscura), whereas the obscura subgroup remains heterogeneous assemblage that could be reasonably subdivided into at least two complexes (i.e., subobscura and obscura).  相似文献   

18.
Adaptive radiation is an aspect of evolutionary biology encompassing microevolution and macroevolution, for explaining the principles of lineage divergence. There are intrinsic as well as extrinsic factors that can be postulated to explain that adaptive radiation has taken place in specific lineages. The Diabroticina beetles are a prominent example of differential diversity that could be examined in detail to explain the diverse paradigms of adaptive radiation. Macroevolutionary analyses must present the differential diversity patterns in a chronological framework. The current study reviews the processes that shaped the differential diversity of some Diabroticina lineages (i.e. genera Acalymma, Cerotoma, and Diabrotica). These diversity patterns and the putative processes that produced them are discussed within a statistically reliable estimate of time. This was achieved by performing phylogenetic and coalescent analyses for 44 species of chrysomelid beetles. The data set encompassed a total of 2,718 nucleotide positions from three mitochondrial and two nuclear loci. Pharmacophagy, host plant coevolution, competitive exclusion, and geomorphological complexity are discussed as putative factors that might have influenced the observed diversity patterns. The coalescent analysis concluded that the main radiation within Diabroticina beetles occurred between middle Oligocene and middle Miocene. Therefore, the radiation observed in these beetles is not recent (i.e. post-Panamanian uplift, 4 Mya). Only a few speciation events in the genus Diabrotica might be the result of the Pleistocene climatic oscillations.  相似文献   

19.
Geoffrey Fryer 《Hydrobiologia》1995,307(1-3):57-68
The distinctness of the Anomopoda and the polyphyletic nature of the so-called Cladocera are emphasized.An attempt is made to reconstruct the ancestral anomopod, which probably lived in Palaeozoic times. This task is facilitated by the availability of detailed information on extant forms, which includes functional as well as purely morphological considerations and enables us to understand the means whereby complex mechanisms were transformed during evolution. Comparative studies on the ecology and habits of extant forms also throw light on the probable way of life of the ancestral anomopod.Adaptive radiation within the Anomopoda is briefly surveyed and an outline of the suggested phylogeny of the order is indicated.Institute of Environmental and Biological Sciences, University of Lancaster  相似文献   

20.
The emergence of angiosperm‐dominated tropical forests in the Cretaceous led to major shifts in the composition of biodiversity on Earth. Among these was the rise to prominence of epiphytic plant lineages, which today comprise an estimated one‐quarter of tropical vascular plant diversity. Among the most successful epiphytic groups is the Polypodiaceae, which comprises an estimated 1500 species and displays a remarkable breadth of morphological and ecological diversity. Using a time‐calibrated phylogeny for 417 species, we characterized macroevolutionary patterns in the family, identified shifts in diversification rate, and identified traits that are potential drivers of diversification. We find high diversification rates throughout the family, evidence for a radiation in a large clade of Paleotropical species, and support for increased rates of diversification associated with traits including chlorophyllous spores and noncordiform gametophytes. Contrary to previous hypotheses, our results indicate epiphytic species and groups with humus‐collecting leaves diversify at lower rates than the family as a whole. We find that diversification rates in the Polypodiaceae are positively correlated with changes in elevation. Repeated successful exploration of novel habitat types, rather than morphological innovation, appears to be the primary driver of diversification in this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号