首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Competition and cooperation is fundamental to evolution by natural selection, both in animals and plants. Here, I investigate the consequences of such interactions for response in fitness due to natural selection. I provide quantitative genetic expressions for heritable variance and response in fitness due to natural selection when conspecifics interact. Results show that interactions among conspecifics generate extra heritable variance in fitness, and that interacting with kin is the key to evolutionary success because it translates the extra heritable variance into response in fitness. This work also unifies Fisher’s fundamental theorem of natural selection (FTNS) and Hamilton’s inclusive fitness (IF). The FTNS implies that natural selection maximizes fitness, whereas Hamilton proposed maximization of IF. This work shows that the FTNS describes the increase in IF, rather than direct fitness, at a rate equal to the additive genetic variance in fitness. Thus, Hamilton’s IF and Fisher’s FTNS both describe the maximization of IF.  相似文献   

2.
The evolutionary forces that underlie polyandry, including extra-pair reproduction (EPR) by socially monogamous females, remain unclear. Selection on EPR and resulting evolution have rarely been explicitly estimated or predicted in wild populations, and evolutionary predictions are vulnerable to bias due to environmental covariances and correlated selection through unmeasured traits. However, evolutionary responses to (correlated) selection on any trait can be directly predicted as additive genetic covariances (covA) with appropriate components of relative fitness. I used comprehensive life-history, paternity and pedigree data from song sparrows (Melospiza melodia) to estimate covA between a female''s liability to produce extra-pair offspring and two specific fitness components: relative annual reproductive success (ARS) and survival to recruitment. All three traits showed non-zero additive genetic variance. Estimates of covA were positive, predicting evolution towards increased EPR, but 95% credible intervals overlapped zero. There was therefore no conclusive prediction of evolutionary change in EPR due to (correlated) selection through female ARS or recruitment. Negative environmental covariance between EPR and ARS would have impeded evolutionary prediction from phenotypic selection differentials. These analyses demonstrate an explicit quantitative genetic approach to predicting evolutionary responses to components of (correlated) selection on EPR that should be unbiased by environmental covariances and unmeasured traits.  相似文献   

3.
Fisher's fundamental theorem of natural selection, that the rate of change of fitness is given by the additive genetic variance of fitness, has generated much discussion since its appearance in 1930. Fisher tried to capture in the formula the change in population fitness attributable to changes of allele frequencies, when all else is not included. Lessard's formulation comes closest to Fisher's intention, as well as this can be judged. Additional terms can be added to account for other changes. The "theorem" as stated by Fisher is not exact, and therefore not a theorem, but it does encapsulate a great deal of evolutionary meaning in a simple statement. I also discuss the effectiveness of reproductive-value weighting and the theorem in integrated form. Finally, an optimum principle, analogous to least action and Hamilton's principle in physics, is discussed.  相似文献   

4.
Natural selection operates both directly, via the impact of a trait upon the individual's own fitness, and indirectly, via the impact of the trait upon the fitness of the individual's genetically related social partners. These effects are often framed in terms of Hamilton's rule, rb - c > 0, which provides the central result of social-evolution theory. However, a number of studies have questioned the generality of Hamilton's rule, suggesting that it requires restrictive assumptions. Here, we use Fisher's genetical paradigm to demonstrate the generality of Hamilton's rule and to clarify links between different studies. We show that confusion has arisen owing to researchers misidentifying model parameters with the b and c terms in Hamilton's rule, and misidentifying measures of genotypic similarity or genealogical relationship with the coefficient of genetic relatedness, r. More generally, we emphasize the need to distinguish between general kin-selection theory that forms the foundations of social evolution, and streamlined kin-selection methodology that is used to solve specific problems.  相似文献   

5.
Transmitted culture can be viewed as an inheritance system somewhat independent of genes that is subject to processes of descent with modification in its own right. Although many authors have conceptualized cultural change as a Darwinian process, there is no generally agreed formal framework for defining key concepts such as natural selection, fitness, relatedness and altruism for the cultural case. Here, we present and explore such a framework using the Price equation. Assuming an isolated, independently measurable culturally transmitted trait, we show that cultural natural selection maximizes cultural fitness, a distinct quantity from genetic fitness, and also that cultural relatedness and cultural altruism are not reducible to or necessarily related to their genetic counterparts. We show that antagonistic coevolution will occur between genes and culture whenever cultural fitness is not perfectly aligned with genetic fitness, as genetic selection will shape psychological mechanisms to avoid susceptibility to cultural traits that bear a genetic fitness cost. We discuss the difficulties with conceptualizing cultural change using the framework of evolutionary theory, the degree to which cultural evolution is autonomous from genetic evolution, and the extent to which cultural change should be seen as a Darwinian process. We argue that the nonselection components of evolutionary change are much more important for culture than for genes, and that this and other important differences from the genetic case mean that different approaches and emphases are needed for cultural than genetic processes.  相似文献   

6.
George Price showed how the effects of natural selection and environmental change could be mathematically partitioned. This partitioning may be especially useful for understanding host–parasite coevolution, where each species represents the environment for the other species. Here, we use coupled Price equations to study this kind of antagonistic coevolution. We made the common assumption that parasites must genetically match their host''s genotype to avoid detection by the host''s self/nonself recognition system, but we allowed for the possibility that non‐matching parasites have some fitness. Our results show how natural selection on one species results in environmental change for the other species. Numerical iterations of the model show that these environmental changes can periodically exceed the changes in mean fitness due to natural selection, as suggested by R.A. Fisher. Taken together, the results give an algebraic dissection of the eco‐evolutionary feedbacks created during host–parasite coevolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号