首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ubiquitin and UBL (ubiquitin-like) modifiers are small proteins that covalently modify other proteins to alter their properties or behaviours. Ubiquitin modification (ubiquitylation) targets many substrates, often leading to their proteasomal degradation. NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8) is the UBL most closely related to ubiquitin, and its best-studied role is the activation of CRLs (cullin-RING ubiquitin ligases) by its conjugation to a conserved C-terminal lysine residue on cullin proteins. The attachment of UBLs requires three UBL-specific enzymes, termed E1, E2 and E3, which are usually well insulated from parallel UBL pathways. In the present study, we report a new mode of NEDD8 conjugation (NEDDylation) whereby the UBL NEDD8 is linked to proteins by ubiquitin enzymes in vivo. We found that this atypical NEDDylation is independent of classical NEDD8 enzymes, conserved from yeast to mammals, and triggered by an increase in the NEDD8 to ubiquitin ratio. In cells, NEDD8 overexpression leads to this type of NEDDylation by increasing the concentration of NEDD8, whereas proteasome inhibition has the same effect by depleting free ubiquitin. We show that bortezomib, a proteasome inhibitor used in cancer therapy, triggers atypical NEDDylation in tissue culture, which suggests that a similar process may occur in patients receiving this treatment.  相似文献   

2.
The p50 subunit of NF-kappaB is generated by limited processing of the precursor p105. IkappaB kinase-mediated phosphorylation of the C-terminal domain of p105 recruits the SCF(beta-TrCP) ubiquitin ligase, resulting in rapid ubiquitination and subsequent processing/degradation of p105. NEDD8 is known to activate SCF ligases following modification of their cullin component. Here we show that NEDDylation is required for conjugation and processing of p105 by SCF(beta-TrCP) following phosphorylation of the molecule. In a crude extract, a dominant negative E2 enzyme, UBC12, inhibits both conjugation and processing of p105, and inhibition is alleviated by an excess of WT- UBC12. In a reconstituted cell-free system, ubiquitination of p105 was stimulated only in the presence of all three components of the NEDD8 pathway, E1, E2, and NEDD8. A Cul-1 mutant that cannot be NEDDylated could not stimulate ubiquitination and processing of p105. Similar findings were observed also in cells. It should be noted that NEDDylation is required only for the stimulated but not for basal processing of p105. Although the mechanisms that underlie processing of p105 are largely obscure, it is clear that NEDDylation and the coordinated activity of SCF(beta-TrCP) on both p105 and IkappaBalpha serve as an important regulatory mechanism controlling NF-kappaB activity.  相似文献   

3.
Identification of the molecular targets for post-translational modifications is an important step for explaining the regulated pathways. The ubiquitin-like molecule NEDD8 is implicated in the regulation of cell proliferation, viability and development. By combining proteomics and in vivo NEDDylation assays, we identified a subset of ribosomal proteins as novel targets for the NEDD8 pathway. We further show that the lack of NEDDylation in cells causes ribosomal protein instability. Our studies identify a novel and specific role of the NEDD8 pathway in protecting a subset of ribosomal proteins from destabilization.  相似文献   

4.
Modification of proteins with ubiquitin and ubiquitin-like molecules is involved in the regulation of almost every biological process. Historically, each conjugation pathway has its unique set of E1, E2 and E3 enzymes that lead to activation and conjugation of their cognate molecules. Here, we present the unexpected finding that under stress conditions, the ubiquitin E1 enzyme Ube1 mediates conjugation of the ubiquitin-like molecule NEDD8. Inhibition of the 26S proteasome, heat shock and oxidative stress cause a global increase in NEDDylation. Surprisingly, this does not depend on the NEDD8 E1-activating enzyme, but rather on Ube1. A common event in the tested stress conditions is the depletion of “free” ubiquitin. A decrease in “free” ubiquitin levels in the absence of additional stress is sufficient to stimulate NEDDylation through Ube1. Further analysis on the NEDD8 proteome shows that the modified NEDDylated proteins are simultaneously ubiquitinated. Mass spectrometry on the complex proteome under stress reveals the existence of mixed chains between NEDD8 and ubiquitin. We further show that NEDDylation of the p53 tumor suppressor upon stress is mediated mainly through Ube1. Our studies reveal an unprecedented interplay between NEDD8 and ubiquitin pathways operating in diverse cellular stress conditions.  相似文献   

5.
NEDDylation has been shown to participate in the DNA damage pathway, but the substrates of neural precursor cell expressed developmentally downregulated 8 (NEDD8) and the roles of NEDDylation involved in the DNA damage response (DDR) are largely unknown. Translesion synthesis (TLS) is a damage-tolerance mechanism, in which RAD18/RAD6-mediated monoubiquitinated proliferating cell nuclear antigen (PCNA) promotes recruitment of polymerase η (polη) to bypass lesions. Here we identify PCNA as a substrate of NEDD8, and show that E3 ligase RAD18-catalyzed PCNA NEDDylation antagonizes its ubiquitination. In addition, NEDP1 acts as the deNEDDylase of PCNA, and NEDP1 deletion enhances PCNA NEDDylation but reduces its ubiquitination. In response to H2O2 stimulation, NEDP1 disassociates from PCNA and RAD18-dependent PCNA NEDDylation increases markedly after its ubiquitination. Impairment of NEDDylation by Ubc12 knockout enhances PCNA ubiquitination and promotes PCNA-polη interaction, while up-regulation of NEDDylation by NEDD8 overexpression or NEDP1 deletion reduces the excessive accumulation of ubiquitinated PCNA, thus inhibits PCNA-polη interaction and blocks polη foci formation. Moreover, Ubc12 knockout decreases cell sensitivity to H2O2-induced oxidative stress, but NEDP1 deletion aggravates this sensitivity. Collectively, our study elucidates the important role of NEDDylation in the DDR as a modulator of PCNA monoubiquitination and polη recruitment.  相似文献   

6.
Several studies have shown that ribosomal proteins (RPs) are important mediators of p53 activation in response to nucleolar disruption; however, the pathways that control this signalling function of RPs are currently unknown. We have recently shown that RPs are targets for the ubiquitin‐like molecule NEDD8, and that NEDDylation protects RPs from destabilization. Here, we identify NEDD8 as a crucial regulator of L11 RP signalling to p53. A decrease in L11 NEDDylation during nucleolar stress causes relocalization of L11 from the nucleolus to the nucleoplasm. This not only provides the signal for p53 activation, but also makes L11 susceptible to degradation. Mouse double minute 2 (MDM2) ‐mediated NEDDylation protects L11 from degradation and this is required for p53 stabilization during nucleolar stress. By controlling the correct localization and stability of L11, NEDD8 acts as a crucial, new regulator of nucleolar signalling to p53.  相似文献   

7.
Genome integrity is important for cell growth, development and proliferation. The E3 ligase RAD18 plays a vital role in the DNA damage response (DDR) to maintain genome integrity. Recent studies reveal that RAD18 has non-ubiquitinated and mono-ubiquitinated form in normal cells. However, whether RAD18 undergoes other post-translational modification remains to be investigated. Here we show that RAD18 is a target of NEDD8, an ubiquitin-like protein. In response to hydrogen peroxide (H2O2)-induced oxidative stress, RAD18 NEDDylation increases significantly, while its ubiquitination decreases. Moreover, NEDD8 overexpression or deNEDDylase NEDP1 deletion further antagonizes RAD18 ubiquitination. In addition, treatment with MLN4924, an inhibitor of NEDD8-activating Enzyme, reduces the interaction between PCNA and RAD18, which blocks the localization of RAD18 to form foci, and thus inhibiting polymerase η recruitment after oxidative stress. Together, our study demonstrates that RAD18 NEDDylation regulates its localization and involves in the DDR pathway by modulating RAD18 ubiquitination.  相似文献   

8.
NEDDylation, a post-translational modification mediated by the conjugation of the ubiquitin-like protein Nedd8 to specific substrates, is an essential biological process that regulates cell cycle progression in eukaryotes. Here, we report the conservation of NEDDylation machinery and NEDDylated proteins in the silkworm, Bombyx mori. We have identified all the components necessary for reversible NEDDylation in the silkworm including Nedd8, E1, E2, E3, and deNEDDylation enzymes. By the approach of RNAi-mediated gene silencing, it was shown that knockdown of BmNedd8 and the conjugating enzymes decreased the global level of NEDDylation, while knockdown of deNEDDylation enzymes increased the prevalence of this modification in cultured silkworm cells. Moreover, the lack of the NEDDylation system caused cell cycle arrest at the G2/M phase and resulted in defects in chromosome congression and segregation. Using the wild-type and mutants of BmNedd8, we identified the specific substrates of BmNedd8, which are involved in the regulation for many cellular processes, including ribosome biogenesis, spliceosome structure, spindle formation, metabolism, and RNA biogenesis. This clearly demonstrates that the NEDDylation system is able to control multiple pathways in the silkworm. Altogether, the information on the functions and substrates of the NEDDylation system presented here could provide a basis for future investigations of protein NEDDylation and its regulatory mechanism on cell cycle progression in the silkworm.  相似文献   

9.
Members of the cullin and RING finger ROC protein families form heterodimeric complexes to constitute a potentially large number of distinct E3 ubiquitin ligases. We report here that the highly conserved C-terminal sequence in CUL1 is dually required, both for nuclear localization and for modification by NEDD8. Disruption of ROC1 binding impaired nuclear accumulation of CUL1 and decreased NEDD8 modification in vivo but had no effect on NEDD8 modification of CUL1 in vitro, suggesting that ROC1 promotes CUL1 nuclear accumulation to facilitate its NEDD8 modification. Disruption of NEDD8 binding had no effect on ROC1 binding, nor did it affect nuclear localization of CUL1, suggesting that nuclear localization and NEDD8 modification of CUL1 are two separable steps, with nuclear import preceding and required for NEDD8 modification. Disrupting NEDD8 modification diminishes the IkappaBalpha ubiquitin ligase activity of CUL1. These results identify a pathway for regulation of CUL1 activity-ROC1 and the CUL1 C-terminal sequence collaboratively mediate nuclear accumulation and NEDD8 modification, facilitating assembly of active CUL1 ubiquitin ligase. This pathway may be commonly utilized for the assembly of other cullin ligases.  相似文献   

10.
11.
12.
Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity   总被引:12,自引:0,他引:12  
  相似文献   

13.
14.
15.
NEDD8/Rub1 is a ubiquitin (Ub)-like post-translational modifier that is covalently linked to cullin (Cul)-family proteins in a manner analogous to ubiquitylation. NEDD8 is known to enhance the ubiquitylating activity of the SCF complex (composed of Skp1, Cul-1, ROC1 and F-box protein), but the mechanistic role is largely unknown. Using an in vitro reconstituted system, we report here that NEDD8 modification of Cul-1 enhances recruitment of Ub-conjugating enzyme Ubc4 (E2) to the SCF complex (E3). This recruitment requires thioester linkage of Ub to Ubc4. Our findings indicate that the NEDD8-modifying system accelerates the formation of the E2-E3 complex, which stimulates protein polyubiquitylation.  相似文献   

16.
17.
New therapeutic intervention strategies for the treatment of human malignancies are always desired. Approval of bortezomib as a front-line treatment for multiple myeloma highlighted the significance of ubiquitin–proteasome system (UPS) as a promising therapeutic target. However, due to the broad impact of proteasome inhibition, deleterious side effects have been reported with bortezomib treatment. Cullin RING ligases (CRLs)-mediated ubiquitin conjugation process is responsible for the ubiquitin conjugation of 20 % cellular proteins that are designated for degradation through the UPS, most of them are critical proteins involved in cell cycle progression, signaling transduction and apoptosis. Studies have depicted the upstream NEDDylation pathway that controls the CRL activity by regulating the conjugation of an ubiquitin-like-protein NEDD8 to the cullin protein in the complex. A specific pharmaceutical inhibitor of NEDD8 activating enzyme (NAE; E1) MLN4924 was recently developed and has been promoted to Phase I clinical trials for the treatment of several human malignancies. This article summarizes the most recent understanding about the process of NEDD8 conjugation, its relevance for cancer therapy and molecular mechanisms responsible for the potent anti-tumor activity of MLN4924.  相似文献   

18.
Hypoxia-inducible factor α proteins (HIF-αs) are regulated oxygen dependently and transactivate numerous genes essential for cellular adaptation to hypoxia. NEDD8, a member of the ubiquitin-like family, covalently binds to its substrate proteins, and thus, regulates their stabilities and functions. In the present study, we examined the possibility that the HIF signaling is regulated by the neddylation. HIF-1α expression and activity were inhibited by knocking down APPBP1 E1 enzyme for NEDD8 conjugation but enhanced by ectopically expressing NEDD8. HIF-1α and HIF-2α were identified to be covalently modified by NEDD8. NEDD8 stabilized HIF-1α even in normoxia and further increased its level in hypoxia, which also occurred in von Hippel-Lindau (VHL) protein- or p53-null cell lines. The HIF-1α-stabilizing effect of NEDD8 was diminished by antioxidants and mitochondrial respiratory chain blockers. This suggests that the NEDD8 effect is concerned with reactive oxygen species driven from mitochondria rather than with the prolyl hydroxylase (PHD)/VHL-dependent oxygen-sensing system. Based on these findings, we propose that NEDD8 is an ancillary player to regulate the stability of HIF-1α. Furthermore, given the positive role played by HIF-αs in cancer promotion, the NEDD8 conjugation process could be a potential target for cancer therapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号