首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
To examine whether spininess evolved at random or differently in various life forms and plant organs, we characterized spiny, thorny and prickly organs in the entire wild flora of Israel (294 such species). Of the species, 63.3% defended their reproductive organs (the most‐defended organ) and 67.0% defended various non‐reproductive organs. Ninety‐three species defended both their reproductive organs and at least one other part; 48.3% defended their leaves and 36.4% their stems and branches. Spiny wings defended stems and branches only in herbaceous (annual or perennial) species. There were clear differences between the life forms. Annuals and perennial herbs defended mostly their reproductive organs (95.7 and 83.0%, respectively), dwarf shrubs defended mostly their leaves (54.2%) and shrubs and trees mostly their branches (89.7 and 76.2%, respectively). Trees do not defend their reproductive organs by associated sharp appendages. The differences in defence on various organs among different life forms may influence the results of meta‐analysis studies of the optimal defence allocation if such differences are not taken into account. We noted spine, thorn and prickle colours for 167 species with yellow, red, orange and white being the dominant, supporting hypotheses about spines being visually aposematic. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 344–352.  相似文献   

3.
  总被引:2,自引:0,他引:2  
Mutualistic interactions are dynamic associations that vary depending on the costs and benefits to each of the interacting parties. Phenotypic plasticity in mutualistic interactions allows organisms to produce rewards to attract mutualists when the benefits of their presence outweigh the costs of producing the rewards. In ant–plant defensive mutualisms, defences are indirect as plants produce extra‐floral nectaries (EFN) to attract predatory ants to deter herbivores. Here we demonstrate that in broad bean, Vicia faba, the overall number of EFNs on a plant increases dramatically following leaf damage. In two damage treatments, removal of: (1) one‐third of one leaf in a single leaf pair or (2) one‐third of both halves of a single leaf pair, resulted in a 59 and 106% increase in the number of EFNs on the plants, respectively, over 1 week. We suggest that the increased production of visually conspicuous EFNs is an adaptive inducible response, to attract predatory arthropods when risk of herbivory increases.  相似文献   

4.
5.
The present investigation of Crepis tectorum examines the extent to which tradeoffs and patterns of dominance contribute to the association between flower size (head width) and degree of self-fertility among populations adapted to rock outcrops. Partial correlation analyses of phenotypic data from a F2 generation derived from a cross between two outcrop plants and of family means representing one of the parent populations indicate that small-flowered plants fail to reallocate resources to flower and fruit production, that small flower size offers little or no advantage in terms of autofertility, and that floral reduction has little influence on the rate of flower development. Hence, it may be necessary to invoke factors other than tradeoffs to explain the decline in flower size associated with the evolution of autogamy in C. tectorum. Comparison of parent and Fl hybrid means in the crossing experiment suggests incomplete dominance in the alleles for large flower size. Under the assumption that Fl hybrid means reflect the average degree of dominance across loci, I propose inbreeding depression as the basis for some of the reduction in floral morphology.  相似文献   

6.
Florivores are antagonists that damage flowers, and have direct negative effects on flowering and pollination of the attacked plants. While florivory has mainly been studied for its consequences on seed production or siring success, little is known about its impact on mating systems. Damage to flowers can alter pollinator attraction to the plant and may therefore modify patterns of pollen transfer. However, the consequences of damage for mating systems can take two forms: a decrease in flower number reduces opportunities for intra-inflorescence pollen deposition (geitonogamy), which, in turn, may lead to a decrease in selfing; whereas a decrease in floral display may also reduce overall visitation and thus increase the chances of self-pollination via facilitated or autonomous autogamy. We investigated the effects of damage by a bud-clipping weevil ( Anthonomus signatus ) in Fragaria virginiana in an experimental setting mimicking natural conditions. We found that increased damage led to an increase in selfing, a result consistent with the increased autogamy pathway. We discuss the implications of this finding and evaluate the generality of florivore-mediated mating system expression.  相似文献   

7.
    
Capacity for autonomous self‐fertilization provides reproductive assurance, has evolved repeatedly in the plant kingdom, and typically involves several changes in flower morphology and development (the selfing syndrome). Yet, the relative importance of different traits and trait combinations for efficient selfing and reproductive success in pollinator‐poor environments is poorly known. In a series of experiments, we tested the importance of anther–stigma distance and the less studied trait anther orientation for efficiency of selfing in the perennial herb Arabis alpina. Variation in flower morphology among eight self‐compatible European populations was correlated with efficiency of self‐pollination and with pollen limitation in a common‐garden experiment. To examine whether anther–stigma distance and anther orientation are subject to directional and/or correlational selection, and whether this is because these traits affect pollination success, we planted a segregating F2 population at two native field sites. Selection strongly favored a combination of introrse anthers and reduced anther–stigma distance at a site where pollinator activity was low, and supplemental hand‐pollination demonstrated that this was largely because of their effect on securing self‐pollination. The results suggest that concurrent shifts in more than one trait can be crucial for the evolution of efficient self‐pollination and reproductive assurance in pollinator‐poor habitats.  相似文献   

8.
  总被引:2,自引:0,他引:2  
Correlations between traits may constrain ecological and evolutionary responses to multispecies interactions. Many plants produce defensive compounds in nectar and leaves that could influence interactions with pollinators and herbivores, but the relationship between nectar and leaf defences is entirely unexplored. Correlations between leaf and nectar traits may be mediated by resources and prior damage. We determined the effect of nutrients and leaf herbivory by Manduca sexta on Nicotiana tabacum nectar and leaf alkaloids, floral traits and moth oviposition. We found a positive phenotypic correlation between nectar and leaf alkaloids. Herbivory induced alkaloids in nectar but not in leaves, while nutrients increased alkaloids in both tissues. Moths laid the most eggs on damaged, fertilized plants, suggesting a preference for high alkaloids. Induced nectar alkaloids via leaf herbivory indicate that species interactions involving leaf and floral tissues are linked and should not be treated as independent phenomena in plant ecology or evolution.  相似文献   

9.
    
Many island plants are characterized by unique morphology. For example, the high branching angles and small leaves of divaricate plants are a common feature of the New Zealand flora. The divaricate growth form may be an adaptation to deter browsing by extinct avian herbivores (moa); alternatively aspects of the insular climate may be responsible. However, our understanding of the selective pressures responsible for the high branching angles and small leaves of divaricate plants is incomplete. Here, I tested for differences in traits associated with the divaricate growth form between plants from Chatham Island and the New Zealand mainland. Moa never reached the Chatham Islands and its flora is derived from plants on mainland New Zealand. Therefore, I predicted Chatham Island plants to have lost morphological adaptations that may have deterred moa herbivory. Traits were quantified on 316 individuals in the field, allowing for 12 island‐mainland taxonomic comparisons. Chatham Island plants consistently produced smaller branching angles, larger leaves, shorter internodes and larger stems than related mainland plants. Results are therefore consistent with the hypothesis that selection for small leaves and high angled branching may be relaxed on the Chatham Islands due to an absence of moa. Smaller branching angles and larger leaves may offer a competitive advantage to Chatham Island plants.  相似文献   

10.
In flowering plants, pollen limitation has been proposed to intensify selection on floral characters important in pollinator attraction, but may also select for traits that increase seed set through autonomous selfing. Here, a factorial design (+/- pollen addition, +/- pollinator removal) was used to investigate how the pollination environment affects selection on floral morphology via female fitness in a mixed-mating population of the yellow monkeyflower, Mimulus guttatus (Phrymaceae). Female fitness was strongly pollen-limited, with supplementally pollinated plants setting 37% more seeds than open-pollinated individuals. Strong positive selection was found on flower length, weak positive selection on flower width : length ratio and no selection on stigma-anther distance in both open-pollinated and supplementally pollinated treatments. By contrast, flowers with relatively narrow corollas and low stigma-anther distances were favored in the pollinator exclusion treatment. These results provide mixed support for the idea that pollen limitation intensifies selection on floral characters. Despite strong phenotypic selection, natural pollen limitation did not mediate selection on characters associated with either pollinator attraction or self-fertilization. However, the novel pattern of selection on severely pollen-limited plants suggests that reproductive assurance against pollinator loss may have been directly involved in the floral evolution of closely related selfing taxa.  相似文献   

11.
  总被引:1,自引:0,他引:1  
Plants growing in natural environments experience myriad interactions with a diverse assemblage of pathogens, parasites and mutualists. Many of these interactions involve symbiotic bacteria and fungi, but they also include macroparasitic plants. In this study, we investigated the interactions among a host grass (Lolium pratense, ex., Festuca pratensis), its symbiotic endophytic fungus (Neotyphodium uncinatum), a root hemiparasitic plant (Rhinanthus serotinus) of the host grass and a generalist herbivore (aphid Aulacorthum solani) of the hemiparasite. We demonstrate that the hemiparasitic plant acquires defending mycotoxins produced by the endophytic fungus living within their shared host grass. The uptake of defensive mycotoxins from the endophyte‐infected host grass enhances the resistance of the hemiparasitic plant to the generalist aphid herbivore. Endophyte infection increases the performance of the hemiparasitic plant, but reduces the growth of the host grass. In other words, the mutualistic endophytic fungus becomes parasitic in the presence of the hemiparasitic plant. Our results suggest that the outcomes of grass–endophyte interactions are conditional on the complexity of community‐level interactions; thus, the outcome of multispecies interactions may not be predictable from pair‐wise combinations of species.  相似文献   

12.
Protective floral structures may evolve in response to the negative effects of floral herbivores. For example, water calyces--liquid-filled, cup-like structures resulting from the fusion of sepals--may reduce floral herbivory by submerging buds during their development. Our observations of a water-calyx plant, Chrysothemis friedrichsthaliana (Gesneriaceae), revealed that buds were frequently attacked by ovipositing moths (Alucitidae), whose larvae consumed anthers and stigmas before corollas opened. Almost 25% of per-plant flower production was destroyed by alucitid larvae over two seasons, far exceeding the losses to all other floral herbivores combined. Experimental manipulation of water levels in calyces showed that a liquid barrier over buds halved per-flower alucitid egg deposition and subsequent herbivory, relative to buds in calyces without water. Thus, C. friedrichsthaliana's water calyx helps protect buds from a highly detrimental floral herbivore. Our findings support claims that sepal morphology is largely influenced by selection to reduce floral herbivory, and that these pressures can result in novel morphological adaptations.  相似文献   

13.
    
Cleistogamy is characterized by the presence of flowers that are permanently closed, yet they still produce fruits and seeds through autonomous self-pollination. Populations with cleistogamous flowers can also have flowers that open, called chasmogamous, which promote cross-pollination and genetic variability. Acanthaceae is among the families with the highest frequency of cleistogamy, observed mainly in Ruellia. This study aimed to assess cleistogamy in Ruellia blechum for the first time. In a population in Central Brazil, we analysed the production of cleistogamous and chasmogamous flowers, their fruiting, differences in flower bud size, self-pollination in cleistogamous flowers and visitors in chasmogamous flowers. Of the flower buds observed, 35.29% remained closed (cleistogamous flowers), with 31.25% of them forming fruit. In contrast, 60.24% of the flowers that opened (chasmogamous) developed fruit. The length of cleistogamous flowers was shorter than that of chasmogamous floral buds in pre-anthesis. On average, 24.45 pollen grains were self-deposited on the stigma of a cleistogamous flower. The chasmogamous flowers were visited mainly by small bees. This study is the first to confirm the presence of cleistogamous flowers in R. blechum. However, their co-occurrence with chasmogamous flowers suggests a fitness advantage for maintaining a mixed mating strategy.  相似文献   

14.
15.
    
The fixed and plastic traits possessed by a plant, which may be collectively thought of as its strategy, are commonly modelled as density‐independent adaptations to its environment. However, plant strategies may also represent density‐ or frequency‐dependent adaptations to the strategies used by neighbours. Game theory provides the tools to characterise such density‐ and frequency‐dependent interactions. Here, we review the contributions of game theory to plant ecology. After briefly reviewing game theory from the perspective of plant ecology, we divide our review into three sections. First, game theoretical models of allocation to shoots and roots often predict investment in those organs beyond what would be optimal in the absence of competition. Second, game theoretical models of enemy defence suggest that an individual's investment in defence is not only a means of reducing its own tissue damage but also a means of deflecting enemies onto competitors. Finally, game theoretical models of trade with mutualistic partners suggest that the optimal trade may reflect competition for access to mutualistic partners among plants. In short, our review provides an accessible entrance to game theory that will help plant ecologists enrich their research with its worldview and existing predictions.  相似文献   

16.
叶曦  方笛熙  张锋 《生态学报》2024,44(1):246-255
高阶作用通常指一个物种对另外两个物种之间相互作用强度的影响,对物种共存、群落构建及生物多样性具有重要影响。在集合种群水平上考虑了植食动物对动植物传粉关系造成的高阶作用,以及植食动物对传粉者的间接作用。通过分析基本生态过程,建立植物-传粉者-植食动物的集合群落模型,模型清楚地展示高阶作用和间接作用,可以用来研究它们对集合群落稳定性和续存的影响。结果表明:(1)互惠关系在集合群落尺度上会引起双稳态现象,说明了群落动态对初始条件的依赖性;(2)正高阶作用能够扩大集合群落双稳态的参数范围,负高阶作用和间接作用缩小它的参数范围,但都不会从本质上改变双稳态现象;(3)正高阶作用能够降低集合群落的灭绝阈值,增加集合群落稳定时的占有率,有利于集合群落续存,而负高阶作用和间接作用不利于续存。研究结果说明高阶和间接作用对调节多物种系统动态和物种共存具有重要作用。  相似文献   

17.
    
In columnar cacti, a higher production of reproductive structures on branches oriented towards the Equator has been explained by their higher interception of photosynthetic active radiation (PAR) as well as resource availability. The goal of this study was to evaluate the effect of orientation on diverse aspects of the reproductive biology of Myrtillocactus geometrizans. Phenology was studied in north- and south-facing branches. Floral cycle events, floral visitors, reproductive traits associated with sexual and attraction functions, and reproductive success were estimated from reproductive structures with contrasting orientation. Pollination experiments were conducted to evaluate the effect of orientation on mating system. Our results showed that south-facing branches had a longer duration of the mature fruit phenophase. Moreover, flower synchrony, production of reproductive structures, and floral traits associated with the male (number of anthers and pollen grains per floral bud), female (number and size of ovules and dimensions of both ovary and ovary cavity), and attraction (petal size) functions had higher values in south-facing flowers. The beginning and ending of the male function and the end of flower anthesis occurred earlier in south-facing flowers. Diversity of floral visitors was similar between orientations, except for beetles whose abundance was greater in flowers oriented towards the south. North- and south-facing flowers had a mixed mating system, with similar reproductive success. Our results showed strong differences in the reproductive biology of an intertropical columnar cactus, probably in response to the uneven PAR interception and resource availability in branches and flowers with contrasting orientation.  相似文献   

18.
The effect of elevated CO2 concentrations on the levels of secondary metabolites was investigated in tobacco plants grown under two nitrogen supply (5 and 8 mM NH4NO3) and CO2 conditions (350 and 1000 p.p.m.) each. High CO2 resulted in a dramatic increase of phenylpropanoids in the leaves, including the major carbon-rich compound chlorogenic acid (CGA) and the coumarins scopolin and scopoletin at both nitrogen fertilizations. This was accompanied by increased PAL activity in leaves and roots, which was even higher at the lower nitrogen supply. Hardly any change was observed for the structural phenolic polymer lignin and the sesquiterpenoid capsidiol. In contrast, elevated CO2 led to clearly decreased levels of the main nitrogen-rich constituent nicotine at the lower N-supply (5 mM NH4NO3) but not when plants were grown at the higher N-supply (8 mM NH4NO3). Inoculation experiments with potato virus Y (PVY) were used to evaluate possible ecological consequences of elevated CO2. The titre of viral coat-protein was markedly reduced in leaves under these conditions at both nitrogen levels. Since PR-gene expression and free salicylic acid (SA) levels remained unchanged at elevated CO2, we suggest that the accumulation of phenylpropanoids, for example, the major compound CGA and the coumarins scopolin and scopoletin may result in an earlier confinement of the virus at high CO2. Based on our results two final conclusions emerge. First, elevated CO2 leads to a shift in secondary metabolite composition that is dependent on the availability of nitrogen. Second, changes in the pool of secondary metabolites have important consequences for plant-pathogen interactions as shown for PVY as a test organism.  相似文献   

19.
    
Plants produce and utilize a great diversity of chemicals for a variety of physiological and ecological purposes. Many of these chemicals defend plants against herbivores, pathogens and competitors. The location of these chemicals varies within the plant, some are located entirely within plant tissues, others exist in the air‐ (or water‐) space around plants, and still others are secreted onto plant surfaces as exudates. I argue herein that the location of a given defensive chemical has profound implications for its ecological function; specifically, I focus on the characteristics of chemical defences secreted onto plant surfaces. Drawing from a broad literature encompassing ecology, evolution, taxonomy and physiology, I found that these external chemical defences (ECDs) are common and widespread in plants and algae; hundreds of examples have been detailed, yet they are not delineated as a separate class from internal chemical defences (ICDs). I propose a novel typology for ECDs and, using existing literature, explore the ecological consequences of the hypothesized unique characteristics of ECDs. The axis of total or proportional investment in ECDs versus ICDs should be considered as one axis of investment by a plant, in the same way as quantitative versus qualitative chemical defences or induced versus constitutive defences is considered. The ease of manipulating ECDs in many plant systems presents a powerful tool to help test plant defence theory (e.g. optimal defence). The framework outlined here integrates various disciplines of botany and ecology and suggests a need for further examinations of exudates in a variety of contexts, as well as recognition of the effects of within‐plant localization of defences.  相似文献   

20.
The concept of a trade-off has long played a prominent role in understanding the evolution of organismal interactions such as mutualism, parasitism, and competition. Given the complexity inherent to interactions between different evolutionary entities, ecological factors may especially limit the power of trade-off models to predict evolutionary change. Here, we use four case studies to examine the importance of ecological context for the study of trade-offs in organismal interactions: (1) resource-based mutualisms, (2) parasite transmission and virulence, (3) plant biological invasions, and (4) host range evolution in parasites and parasitoids. In the first two case studies, mechanistic trade-off models have long provided a strong theoretical framework but face the challenge of testing assumptions under ecologically realistic conditions. Work under the second two case studies often has a strong ecological grounding, but faces challenges in identifying or quantifying the underlying genetic mechanism of the trade-off. Attention is given to recent studies that have bridged the gap between evolutionary mechanism and ecological realism. Finally, we explore the distinction between ecological factors that mask the underlying evolutionary trade-offs, and factors that actually change the trade-off relationship between fitness-related traits important to organismal interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号