首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copulation duration varies considerably across species, but few comparative studies have examined factors that might underlie such variation. We examined the relationship between copulation duration (prior to spermatophore transfer), the complexity of titillators (sclerotized male genital contact structures), spermatophore mass and male body mass across 54 species of bushcricket. Using phylogenetic comparative analyses, we found that copulation duration was much longer in species with titillators than those without, but it was not longer in species with complex compared with simple titillators. A positive relationship was found between spermatophore size and copulation duration prior to ejaculate transfer, which supports the hypothesis that this represents a period of mate assessment. The slope of this relationship was steeper in species with simple rather than complex titillators. Although the data suggest that the presence of titillators is necessary to maintain long copulation prior to ejaculate transfer, mechanisms underlying this association remain unclear.  相似文献   

2.
Sexual conflict over mating can result in sex-specific morphologies and behaviours that allow each sex to exert control over the outcome of reproduction. Genital traits, in particular, are often directly involved in conflict interactions. Via genital manipulation, we experimentally investigated whether genital traits in red-sided garter snakes influence copulation duration and formation of a copulatory plug. The hemipenes of male red-sided garter snakes have a large basal spine that inserts into the female cloaca during mating. We ablated the spine and found that males were still capable of copulation but copulation duration was much shorter and copulatory plugs were smaller than those produced by intact males. We also anaesthetized the female cloacal region and found that anaesthetized females copulated longer than control females, suggesting that female cloacal and vaginal contractions play a role in controlling copulation duration. Both results, combined with known aspects of the breeding biology of red-sided garter snakes, strongly support the idea that sexual conflict is involved in mating interactions in this species. Our results demonstrate the complex interactions among male and female traits generated by coevolutionary processes in a wild population. Such complexity highlights the importance of simultaneous examination of male and female traits.  相似文献   

3.
Rapid evolution has led to a large diversity in the sizes and morphology of male genitals across taxa, but the mechanisms driving this evolution remain controversial. In this study, we investigated the function of male genital sclerites in the adzuki bean beetle (Callosobruchus chinensis) and compared the length and morphology of genital sclerites between two populations that vary in their degree of polyandry. We found that the length of male genital sclerites was negatively correlated with copulation duration but positively correlated with the speed of matings with multiple females. Additionally, we found that the average length and number of genital sclerite spines of males from the more polyandrous population were larger than those from the less polyandrous population. We suggest that the genital sclerite of male adzuki bean beetles evolved by sexual selection, and a larger genital sclerite has a selective advantage because it allows for rapid copulations with multiple females.  相似文献   

4.
    
While congruent evidence indicates that sexual selection is the most likely selective force explaining the rapid divergence of male genital morphology in insects, the mechanisms involved in this process remain unclear. In particular, little attention has been paid to precopulatory sexual selection. We examine sexual selection for mating success on male genital components in six populations of Aquarius remigis, a water strider characterized by unique genital morphology. Multivariate selection analysis confirms previous findings that precopulatory sexual selection favours longer external genitalia, and provides new evidence that this selection acts independently on external genital components. In contrast, the size of the major internal genital sclerite is not correlated with mating success. Thus, precopulatory sexual selection acts strongly on the size of the external genitalia, but not on the intromittent organ itself. These results highlight the multiple functions of genital organs and the importance of both precopulatory and post-copulatory sexual selection in shaping the remarkable diversity of male genitalia in insects.  相似文献   

5.
    
The contemporary explanation for the rapid evolutionary diversification of animal genitalia is that such traits evolve by post‐copulatory sexual selection. Here, we test the hypothesis that the male genital spines of Drosophila ananassae play an adaptive role in post‐copulatory sexual selection. Whereas previous work on two Drosophila species shows that these spines function in precopulatory sexual selection to initiate genital coupling and promote male competitive copulation success, further research is needed to evaluate the potential for Drosophila genital spines to have a post‐copulatory function. Using a precision micron‐scale laser surgery technique, we test the effect of spine length reduction on copulation duration, male competitive fertilization success, female fecundity and female remating behaviour. We find no evidence that male genital spines in this species have a post‐copulatory adaptive function. Instead, females mated to males with surgically reduced/blunted genital spines exhibited comparatively greater short‐term fecundity relative to those mated by control males, indicating that the natural (i.e. unaltered) form of the trait may be harmful to females. In the absence of an effect of genital spine reduction on measured components of post‐copulatory fitness, the harm seems to be a pleiotropic side effect rather than adaptive. Results are discussed in the context of sexual conflict mediating the evolution of male genital spines in this species and likely other Drosophila.  相似文献   

6.
    
The hypothesis that the elaborated genitalia of male insects serve to improve insemination success were tested using the ground beetle Carabus insulicola. To enhance variation in genital size, the genital hooks of experimental males were cut, and these males were then mated with virgin females. Logistic regression showed that the length of the male genital hook affected insemination success. Males with a shorter genital hook tended not to deposit spermatophores at the proper site, and failed to transfer sperm into the spermatheca. Therefore, the male genital hook serves to increase insemination success by depositing a spermatophore at the site where sperm are likely to be transferred. The duration of copulation and post-copulatory guarding may also be explained by these determinants. Stepwise regressions indicated that the occurrence of ejaculation, and the location of the spermatophore determined the duration of copulation and post-copulatory guarding, respectively.  相似文献   

7.
    
Complex genitalia are ubiquitous among arthropods, but little attention has been given to the fact that the evolution of such elaborate structures may have led to biomechanical constraints that hinder their usage. In the rove beetle, Aleochara tristis, the male's intromittant organ consists of a long flagellum that is more than twice the body length. It is introduced into the spermathecal duct of the female during copulation. The flagellum apparently functions as a guiding rod for a tube growing from the spermatophore that the male deposits in the female's genital chamber. The extraordinary length of the intromittant organ poses a unique physical challenge for the male. During its retraction from the female after mating, the flagellum is under considerable tension. Any sudden release of this tension would result in the flagellum becoming severely entangled, preventing the male from mating again. In response to this novel physical challenge, males have apparently evolved a specialized behavioural adaptation that prevents entanglement after copulation. While retracting the flagellum from the female, the male secures it between a wing shoulder and the pronotum ('shouldering'), holding it taut for about one half of its length. This allows the stepwise retraction of the flagellum from the female and allows it to be retracted back into the male's body in an orderly fashion. This is, to our knowledge, the first demonstration of a behavioural adaptation that has evolved to ameliorate the biomechanical problems caused by exaggerated genital morphology.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 307–312.  相似文献   

8.
    
《法国昆虫学会纪事》2012,48(6):482-484
Summary

A new term, endophallite, is proposed to standardize the nomenclature of the various sclerotized elements of the insect endophallus.  相似文献   

9.
    
Male genital traits exhibit extraordinary interspecific phenotypic variation. This remarkable and general evolutionary trend is widely considered to be the result of sexual selection. However, we still do not have a good understanding of whether or how individual genital traits function in different competitive arenas (episodes of sexual selection), or how different genital traits may interact to influence competitive outcomes. Here, we use an experimental approach based on high‐precision laser phenotypic engineering to address these outstanding questions, focusing on three distinct sets of micron‐scale external (nonintromittent) genital spines in male Drosophila kikkawai Burla (Diptera: Drosophilidae). Elimination of the large pair of spines on the male secondary claspers sharply reduced male ability to copulate, yet elimination of the other sets of spines on the primary and secondary claspers had no significant effects on copulation probability. Intriguingly, both the large spines on the secondary claspers and the cluster of spines on the primary claspers were found to independently promote male competitive fertilization success. Moreover, when large and small secondary clasper spines were simultaneously shortened in individual males, these males suffered greater reductions in fertilization success relative to males whose traits were altered individually, providing evidence for synergistic effects of external genital traits on fertilization success. Overall, the results are significant in demonstrating that a given genital trait (the large spines on the secondary claspers) can function in different episodes of sexual selection, and distinct genital traits may interact in sexual selection. The results offer an important contribution to evolutionary biology by demonstrating an understudied selective mechanism, operating via subtle trait interactions in a post‐insemination context, by which genital traits may be co‐evolving.  相似文献   

10.
    
  相似文献   

11.
    
Female fritillary butterflies (Lepidoptera: Nymphalidae: Argynnini) are known to have diversified genital structures, especially at the entrance of the bursa copulatrix. However, the origin and function of such elaborated structures are poorly known to date. We examined the male and female genital structures of six Japanese species selected from five genera/subgenera [Argynnis (Argynnis), Argynnis (Damora), Argynnis (Argyronome), Fabriciana, and Speyeria] of the Argynnini tribe and found that traumatic copulation is widespread in Argynnini. Various male genital structures, such as the uncus, valva, and phallus, can cause wounds to the female genitalia. The eighth venter of the female, where the highest morphological diversity in female genitalia was detected, is hooked and held by the male uncus during copulation. It is very likely that the diversified female genital structure coevolved with the male uncus as a counterpart for traumatic coupling.  相似文献   

12.
Hypotheses regarding the function of elaborate male genitalia were tested in a sample of insects and spiders by comparing their allometric values (slopes in log-log regressions on indicators of body size) with those of other body parts. Male genitalia consistently had lower slopes than other body parts. Perhaps as a consequence of this pattern, genitalic size also tended, though less consistently, to have lower coefficients of variation than did the size of other body parts. The morphological details of coupling between males and females in several species clearly indicated that selection favoring mechanical fit is not responsible for these trends. Sexual selection on male courtship structures that are brought into contact with females in precise ways may favor relatively low allometric values, in contrast to the high values seen in the other sexually selected characters (usually visual display devices) that have been studied previously, because a female's own size will influence her perception of the contact courtship devices of a male.  相似文献   

13.
14.
We investigated the importance of male song and morphological characters to the male mating success in a two-year field study in natural populations ofD. littoralis andD. montana. We compared the properties of mating flies with those of a random male sample taken at the same time and place. InD. littoralis the male's size had no effect on his mating success, while inD. montana small males had a mating advantage in the field during the first study year. Females preferred males with short sound pulses in both species. We also examined the relationship between male morphological and song characters and viability by collecting male flies in late summer and comparing the means of male characters to those of overwintered flies the next spring. InD. littoralis male size had no effect on overwinter survival. InD. montana large flies survived better than small flies. In both species the shifts in song characters during the winter dormancy were opposite to those caused by sexual selection. Our results, accordingly, imply a possible balance between the forces of sexual and natural selection, which act in opposing directions on attractive male traits.  相似文献   

15.
The role of sexual selection in fuelling genital evolution is becoming increasingly apparent from comparative studies revealing interspecific divergence in male genitalia and evolutionary associations between male and female genital traits. Despite this, we know little about intraspecific variance in male genital morphology, or how male and female reproductive traits covary among divergent populations. Here we address both topics using natural populations of the guppy, Poecilia reticulata, a livebearing fish that exhibits divergent patterns of male sexual behaviour among populations. Initially, we performed a series of mating trials on a single population to examine the relationship between the morphology of the male's copulatory organ (the gonopodium) and the success of forced matings. Using a combination of linear measurements and geometric morphometrics, we found that variation in the length and shape of the gonopodium predicted the success of forced matings in terms of the rate of genital contacts and insemination success, respectively. We then looked for geographical divergence in these traits, since the relative frequency of forced matings tends to be greater in high-predation populations. We found consistent patterns of variation in male genital size and shape in relation to the level of predation, and corresponding patterns of (co)variation in female genital morphology. Together, these data enable us to draw tentative conclusions about the underlying selective pressures causing correlated patterns of divergence in male and female genital traits, which point to a role for sexually antagonistic selection.  相似文献   

16.
The male genitalia of arthropods consistently show negative static allometry (the genitalia of small males of a species are disproportionally large, and those of large males are disproportionally small). We discuss relations between the ‘one‐size‐fits‐all’ hypothesis to explain this allometry and the regimes of selection that may be acting on genitalia. We focus on the contrasts between directional vs. stabilizing selection, and natural vs. sexual selection. In addition, we point out some common methodological problems in studies of genital allometry. One‐size‐fits‐all types of arguments for negative allometry imply net stabilizing selection, but the effects of stabilizing selection on allometry will be weaker when the correlation between body size and the trait size is weaker. One‐size‐fits‐all arguments can involve natural as well as sexual selection, and negative allometry can also result from directional selection. Several practical problems make direct tests of whether directional or stabilizing selection is acting difficult. One common methodological problem in previous studies has been concentration on absolute rather than relative values of the allometric slopes of genitalia; there are many reasons to doubt the usefulness of comparing absolute slopes with the usual reference value of 1.00. Another problem has been the failure to recognize that size and shape are independent traits of genitalia; rapid divergence in the shape of genitalia is thus not paradoxical with respect to the reduced variation in their sizes that is commonly associated with negative allometric scaling.  相似文献   

17.
For their size, barnacles possess the longest penis of any animal (up to eight times their body length). However, as one of few sessile animals to copulate, they face a trade-off between reaching more mates and controlling ever-longer penises in turbulent flow. We observed that penises of an intertidal barnacle (Balanus glandula) from wave-exposed shores were shorter than, stouter than, and more than twice as massive for their length as, those from nearby protected bays. In addition, penis shape variation was tightly correlated with maximum velocity of breaking waves, and, on all shores, larger barnacles had disproportionately stouter penises. Finally, field experiments confirmed that most of this variation was due to phenotypic plasticity: barnacles transplanted to a wave-exposed outer coast produced dramatically shorter and wider penises than counterparts moved to a protected harbour. Owing to the probable trade-off between penis length and ability to function in flow, and owing to the ever-changing wave conditions on rocky shores, intertidal barnacles appear to have acquired the capacity to change the size and shape of their penises to suit local hydrodynamic conditions. This dramatic plasticity in genital form is a valuable reminder that factors other than the usual drivers of genital diversification--female choice, sexual conflict and male-male competition--can influence genital form.  相似文献   

18.
    
Sexual dimorphism often arises as a response to selection on traits that improve a male's ability to physically compete for access to mates. In primates, sexual dimorphism in body mass and canine size is more common in species with intense male–male competition. However, in addition to these traits, other musculoskeletal adaptations may improve male fighting performance. Postcranial traits that increase strength, agility, and maneuverability may also be under selection. To test the hypothesis that males, as compared to females, are more specialized for physical competition in their postcranial anatomy, we compared sex-specific skeletal shape using a set of functional indices predicted to improve fighting performance. Across species, we found significant sexual dimorphism in a subset of these indices, indicating the presence of skeletal shape sexual dimorphism in our sample of anthropoid primates. Mean skeletal shape sexual dimorphism was positively correlated with sexual dimorphism in body size, an indicator of the intensity of male–male competition, even when controlling for both body mass and phylogenetic relatedness. These results suggest that selection on male fighting ability has played a role in the evolution of postcranial sexual dimorphism in primates.  相似文献   

19.
    
Natural selection and post‐copulatory sexual selection, including sexual conflict, contribute to genital diversification. Fundamental first steps in understanding how these processes shape the evolution of specific genital traits are to determine their function experimentally and to understand the interactions between female and male genitalia during copulation. Our experimental manipulations of male and female genitalia in red‐sided garter snakes (Thamnophis sirtalis parietalis) reveal that copulation duration and copulatory plug deposition, as well as total and oviductal/vaginal sperm counts, are influenced by the interaction between male and female genital traits and female behaviour during copulation. By mating females with anesthetized cloacae to males with spine‐ablated hemipenes using a fully factorial design, we identified significant female–male copulatory trait interactions and found that females prevent sperm from entering their oviducts by contracting their vaginal pouch. Furthermore, these muscular contractions limit copulatory plug size, whereas the basal spine of the male hemipene aids in sperm and plug transfer. Our results are consistent with a role of sexual conflict in mating interactions and highlight the evolutionary importance of female resistance to reproductive outcomes.  相似文献   

20.
Male genitalia in Drosophila exemplify strikingly rapid and divergent evolution, whereas female genitalia are relatively invariable. Whereas precopulatory and post-copulatory sexual selection has been invoked to explain this trend, the functional significance of genital structures during copulation remains obscure. We used time-sequence analysis to study the functional significance of external genitalic structures during the course of copulation, between D. melanogaster and D. simulans. This functional analysis has provided new information that reveals the importance of male-driven copulatory mechanics and strategies in the rapid diversification of genitalia. The posterior process, which is a recently evolved sexual character and present only in males of the melanogaster clade, plays a crucial role in mounting as well as in genital coupling. Whereas there is ample evidence for precopulatory and/or post-copulatory female choice, we show here that during copulation there is little or no physical female choice, consequently, males determine copulation duration. We also found subtle differences in copulatory mechanics between very closely related species. We propose that variation in male usage of novel genitalic structures and shifts in copulatory behaviour have played an important role in the diversification of genitalia in species of the Drosophila subgroup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号