首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The organization of the genome is nonrandom and important for correct function. Specifically, the nuclear envelope plays a critical role in gene regulation. It generally constitutes a repressive environment, but several genes, including the GAL locus in budding yeast, are recruited to the nuclear periphery on activation. Here, we combine imaging and computational modeling to ask how the association of a single gene locus with the nuclear envelope influences the surrounding chromosome architecture. Systematic analysis of an entire yeast chromosome establishes that peripheral recruitment of the GAL locus is part of a large-scale rearrangement that shifts many chromosomal regions closer to the nuclear envelope. This process is likely caused by the presence of several independent anchoring points. To identify novel factors required for peripheral anchoring, we performed a genome-wide screen and demonstrated that the histone acetyltransferase SAGA and the activity of histone deacetylases are needed for this extensive gene recruitment to the nuclear periphery.  相似文献   

4.
Yra1p is an essential nuclear protein which belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p contributes to mRNA export in vivo and directly interacts with RNA and the shuttling mRNP export receptor Mex67p in vitro. Here we describe a second nonessential Saccharomyces cerevisiae family member, called Yra2p, which is able to complement a YRA1 deletion when overexpressed. Like other REF proteins, Yra1p and Yra2p consist of two highly conserved N- and C-terminal boxes and a central RNP-like RNA-binding domain (RBD). These conserved regions are separated by two more variable regions, N-vr and C-vr. Surprisingly, the deletion of a single conserved box or the deletion of the RBD in Yra1p does not affect viability. Consistently, neither the conserved N and C boxes nor the RBD is required for Mex67p and RNA binding in vitro. Instead, the N-vr and C-vr regions both interact with Mex67p and RNA. We further show that Yra1 deletion mutants which poorly interact with Mex67p in vitro affect the association of Mex67p with mRNP complexes in vivo and are paralleled by poly(A)(+) RNA export defects. These observations support the idea that Yra1p promotes mRNA export by facilitating the recruitment of Mex67p to the mRNP.  相似文献   

5.
We have identified between Mex67p and Mtr2p a complex which is essential for mRNA export. This complex, either isolated from yeast or assembled in Escherichia coli, can bind in vitro to RNA through Mex67p. In vivo, Mex67p requires Mtr2p for association with the nuclear pores, which can be abolished by mutating either MEX67 or MTR2. In all cases, detachment of Mex67p from the pores into the cytoplasm correlates with a strong inhibition of mRNA export. At the nuclear pores, Nup85p represents one of the targets with which the Mex67p-Mtr2p complex interacts. Thus, Mex67p and Mtr2p constitute a novel mRNA export complex which can bind to RNA via Mex67p and which interacts with nuclear pores via Mtr2p.  相似文献   

6.
Human TAP and Saccharomyces cerevisiae Mex67p belong to a family of proteins that mediate mRNA export. Computer searches identified previously two Caenorhabditis elegans genes, C15H11.3 and C115H11.6, that encode putative homologs of hTAP and Mex67p (Segref et al., EMBO J, 1997, 16:3256-3271). Using RNA interference experiments in C. elegans, we found that functional knockout of C15H11.3 resulted in nuclear accumulation of poly(A)-containing RNAs and was lethal for both embryos and adult nematodes. No embryonic or progeny abnormality was observed in functional knockout of C15H11.6. Taken together, these data established that the C15H11.3 gene product is an ortholog of hTAP and Mex67p; thus, it was named Ce-NXF-1. Ce-NXF-1 binds RNA directly and is a nucleocytoplasmic shuttle protein accumulating in the nucleoplasm and at the nuclear rim. The rim association is mediated via unique signals present in the C-terminal portion of all TAP/NXF and Mex67p proteins. This region was shown to interact with the FG-repeat domains of nucleoporins Nup98, Nup153, and Nup214, indicating that the rim association occurs through components of the nuclear pore complex. In summary, Ce-NXF-1 belongs together with hTAP and Mex67p to a family of proteins that participate in mRNA export and can provide a direct molecular link between mRNAs and components of the nuclear pore complex. Therefore, despite differences in mRNA metabolism between these species, they utilize a conserved mRNA transport mechanism.  相似文献   

7.
It is not known how Mex67p and Mtr2p, which form a heterodimer essential for mRNA export, transport mRNPs through the nuclear pore. Here, we show that the Mex67p/Mtr2p complex binds to all of the repeat types (GLFG, FXFG, and FG) found in nucleoporins. For this interaction, complex formation between Mex67p and Mtr2p has to occur. MEX67 and MTR2 also genetically interact with different types of repeat nucleoporins, such as Nup116p, Nup159p, Nsp1p, and Rip1p/Nup40p. These data suggest a model in which nuclear mRNA export requires the Mex67p/Mtr2p heterodimeric complex to directly contact several repeat nucleoporins, organized in different nuclear pore complex subcomplexes, as it carries the mRNP cargo through the nuclear pore.  相似文献   

8.
9.
10.
11.
mRNA export is mediated by Mex67p:Mtr2p/NXF1:p15, a conserved heterodimeric export receptor that is thought to bind mRNAs through the RNA binding adaptor protein Yra1p/REF. Recently, mammalian SR (serine/arginine-rich) proteins were shown to act as alternative adaptors for NXF1-dependent mRNA export. Npl3p is an SR-like protein required for mRNA export in S. cerevisiae. Like mammalian SR proteins, Npl3p is serine-phosphorylated by a cytoplasmic kinase. Here we report that this phosphorylation of Npl3p is required for efficient mRNA export. We further show that the mRNA-associated fraction of Npl3p is unphosphorylated, implying a subsequent nuclear dephosphorylation event. We present evidence that the essential, nuclear phosphatase Glc7p promotes dephosphorylation of Npl3p in vivo and that nuclear dephosphorylation of Npl3p is required for mRNA export. Specifically, recruitment of Mex67p to mRNA is Glc7p dependent. We propose a model whereby a cycle of cytoplasmic phosphorylation and nuclear dephosphorylation of shuttling SR adaptor proteins regulates Mex67p:Mtr2p/NXF1:p15-dependent mRNA export.  相似文献   

12.
13.
14.
Lund MK  Guthrie C 《Molecular cell》2005,20(4):645-651
Eukaryotic mRNAs are exported from the nucleus to the cytoplasm as complex mRNA-protein particles (mRNPs), and translocation through the nuclear pore complex (NPC) is accompanied by extensive structural changes of the mRNP. We have tested the hypothesis that the DEAD-box ATPase Dbp5p is required for such an mRNP rearrangement. In dbp5 mutant cells, the mRNA export receptor Mex67p accumulates on mRNA. This aberrant accumulation of Mex67p with RNA and the cold-sensitive growth phenotype of a dbp5 allele are suppressed by a mex67 mutation. Moreover, Mex67 bound mRNA accumulates at the nuclear rim in a temperature-sensitive dbp5 mutant when the nuclear exosome is impaired. Importantly, although accumulation of Mex67p-containing mRNPs is also observed when a nuclear basket component is mutated, these mRNPs still contain the nuclear export factor Yra1p. In contrast, the dbp5-trapped mRNPs lack Yra1p. We propose that Dbp5p's function is specifically required to displace Mex67p from exported mRNPs, thus terminating export.  相似文献   

15.
Our previous studies have focused on a family of Saccharomyces cerevisiae nuclear pore complex (NPC) proteins that contain domains composed of repetitive tetrapeptide glycine-leucine-phenylalanine-glycine (GLFG) motifs. We have previously shown that the GLFG regions of Nup116p and Nup100p directly bind the karyopherin transport factor Kap95p during nuclear protein import. In this report, we have further investigated potential roles for the GLFG region in mRNA export. The subcellular localizations of green fluorescent protein (GFP)-tagged mRNA transport factors were individually examined in yeast cells overexpressing the Nup116-GLFG region. The essential mRNA export factors Mex67-GFP, Mtr2-GFP, and Dbp5-GFP accumulated in the nucleus. In contrast, the localizations of Gle1-GFP and Gle2-GFP remained predominantly associated with the NPC, as in wild type cells. The localization of Kap95p was also not perturbed with GLFG overexpression. Coimmunoprecipitation experiments from yeast cell lysates resulted in the isolation of a Mex67p-Nup116p complex. Soluble binding assays with bacterially expressed recombinant proteins confirmed a direct interaction between Mex67p and the Nup116-GLFG or Nup100-GLFG regions. Mtr2p was not required for in vitro binding of Mex67p to the GLFG region. To map the Nup116-GLFG subregion(s) required for Kap95p and/or Mex67p association, yeast two-hybrid analysis was used. Of the 33 Nup116-GLFG repeats that compose the domain, a central subregion of nine GLFG repeats was sufficient for binding either Kap95p or Mex67p. Interestingly, the first 12 repeats from the full-length region only had a positive interaction with Mex67p, whereas the last 12 were only positive with Kap95p. Thus, the GLFG domain may have the capacity to bind both karyopherins and an mRNA export factor simultaneously. Taken together, our in vivo and in vitro results define an essential role for a direct Mex67p-GLFG interaction during mRNA export.  相似文献   

16.
17.
A Segref  K Sharma  V Doye  A Hellwig  J Huber  R Lührmann    E Hurt 《The EMBO journal》1997,16(11):3256-3271
An essential cellular factor for nuclear mRNA export called Mex67p which has homologous proteins in human and Caenorhabditis elegans was identified through its genetic interaction with nucleoporin Nup85p. In the thermosensitive mex67-5 mutant, poly(A)+ RNA accumulates in intranuclear foci shortly after shift to the restrictive temperature, but NLS-mediated nuclear protein import is not inhibited. In vivo, Mex67p tagged with green fluorescent protein (GFP) is found at the nuclear pores, but mutant mex67-5-GFP accumulates in the cytoplasm. Upon purification of poly(A)+ RNA derived from of UV-irradiated yeast cells, Mex67p, but not nucleoporins Nup85p and Nup57p, was crosslinked to mRNA. In a two-hybrid screen, a putative RNA-binding protein with RNP consensus motifs was found to interact with the Mex67p carboxy-terminal domain. Thus, Mex67p is likely to participate directly in the export of mRNA from the nucleus to the cytoplasm.  相似文献   

18.
Fribourg S  Conti E 《EMBO reports》2003,4(7):699-703
The association between Mtr2 and Mex67 is essential for the nuclear export of bulk messenger RNA in yeast. In metazoans, the analogous function is carried out by the TAP–p15 heterodimer. Whereas Mex67 and TAP are highly conserved proteins, their binding partners, Mtr2 and p15, share no sequence similarity, but are nevertheless functionally homologous. Here, we report the 2.8-Å resolution crystal structure of Mtr2 in complex with the NTF2-like domain of Mex67. Mtr2 is a novel member of the NTF2-like family and interacts with Mex67, forming a complex with a similar structural architecture to that of TAP–p15. Mtr2 fulfils an analogous function to that of human p15 in maintaining the structural integrity of the heterodimer. In addition, Mtr2 presents a long internal loop, which contains residues that affect the export of the large ribosomal subunit.  相似文献   

19.
Actin-related proteins are ubiquitous components of chromatin remodelers and are conserved from yeast to man. We have examined the role of the budding yeast actin-related protein Arp6 in gene expression, both as a component of the SWR1 complex (SWR-C) and in its absence. We mapped Arp6 binding sites along four yeast chromosomes using chromatin immunoprecipitation from wild-type and swr1 deleted (swr1Δ) cells. We find that a majority of Arp6 binding sites coincide with binding sites of Swr1, the catalytic subunit of SWR-C, and with the histone H2A variant Htz1 (H2A.Z) deposited by SWR-C. However, Arp6 binding detected at centromeres, the promoters of ribosomal protein (RP) genes, and some telomeres is independent of Swr1 and Htz1 deposition. Given that RP genes and telomeres both show association with the nuclear periphery, we monitored the ability of Arp6 to mediate the localization of chromatin to nuclear pores. Arp6 binding is sufficient to shift a randomly positioned locus to nuclear periphery, even in a swr1Δ strain. Arp6 is also necessary for the pore association of its targeted RP promoters possibly through cell cycle-dependent factors. Loss of Arp6, but not Htz1, leads to an up-regulation of these RP genes. In contrast, the pore-association of GAL1 correlates with Htz1 deposition, and loss of Arp6 reduces both GAL1 activation and peripheral localization. We conclude that Arp6 functions both together with the nucleosome remodeler Swr1 and also without it, to mediate Htz1-dependent and Htz1-independent binding of chromatin domains to nuclear pores. This association is shown to have modulating effects on gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号