首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1990,111(6):2885-2891
When loaded alongside GTP-gamma-S into ATP-permeabilized cells, neomycin, at concentrations below 1 mM, inhibits GTP-gamma-S-induced histamine secretion and phosphatidic acid formation (Cockcroft, S., and B. D. Gomperts, 1985. Nature (Lond.). 314: 534-536; Aridor, M., L. M. Traub, and R. Sagi-Eisenberg. 1990. J. Cell Biol. 111:909-917). However, at higher concentrations internally applied neomycin induces histamine secretion in a process that is: (a) dose dependent; (b) dependent on the internal application of GTP; (c) independent of phosphoinositide breakdown; and (d) inhibited by pertussis toxin (PtX) treatment. These results indicate that neomycin can stimulate histamine secretion in a mechanism that bypasses phospholipase C (PLC) activation and yet involves a PtX-sensitive GTP-binding protein (G protein). Unlike its dual effects, when internally applied, neomycin induces histamine secretion from intact mast cells in a dose-dependent manner. Half-maximal and maximal effects are obtained at 0.5 and 1 mM neomycin, respectively. This process is rapid (approximately 30 s), is independent of external Ca2+, and is associated with phosphatidic acid formation, implying that neomycin can activate histamine secretion by a mechanism similar to that utilized by other basic secretagogues of mast cells. Neomycin stimulates fourfold the GTPase activity of cholate- solubilized rat brain membranes in a PtX-inhibitable manner. In addition neomycin, as well as the basic secretagogues of mast cells, compound 48/80, and mastoparan, significantly reduce (by approximately 80%) the ADP ribosylation of PtX substrates present in rat brain membranes. Taken together these data suggest that neomycin can stimulate secretion from mast cells by directly activating G proteins that play a role in stimulus-secretion coupling. When internally applied, neomycin presumably stimulates secretion by activating a G protein that is located downstream to PLC. This G protein serves as a substrate for PtX.  相似文献   

2.
In an attempt to elucidate further the relationship between changes in phospholipid metabolism in, and histamine secretion from, purified rat peritoneal mast cells, the effects of the phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) on these responses in stimulated and unstimulated cells was investigated. TPA caused a dose-dependent increase in the incorporation of 32PO4(3-) into the mast cell phospholipids; phosphatidic acid (PA) and phosphatidylcholine (PC), but not phosphatidylinositol (PI). TPA synergistically enhanced histamine release from cells stimulated by anti-immunoglobulin E (IgE) and the calcium ionophore A23187, reducing its ED50 from 150 nM to 40 nM, but did not alter histamine release from cells stimulated by compound 48/80. The effect of TPA on the changes in 32PO4(3-) incorporation into phospholipids associated with the above secretagogues did not, however, correlate well with the observed effects on histamine secretion induced by the same secretagogues. These observations are discussed in relation to the known effects of phorbol esters upon both secretory processes and phospholipid metabolism in other tissues.  相似文献   

3.
The neuropeptide substance P and the polyamine compound 48/80, both known to activate mast cell secretory processes, increased the rate of GTP S binding to G-proteins purified from calf brain (Go/Gi mixture). The GTPase activity of G-proteins was also increased by substance P and compound 48/80 in a dose-dependent and Mg2+-dependent way. These effects were similar to those of the wasp venom peptide mastoparan, another histamine releaser of rat peritoneal and human skin mast cells. This suggests that the secretory property of compound 48/80 and substance P is not due to a receptor-mediated process but, like mastoparan, results from a direct activation of G-proteins.  相似文献   

4.
The magainins are basic 23 amino acid peptides with a broad spectrum of antimicrobial activity. Their bactericidal effect has been attributed to their capacity to interact with lipid bilayer membranes. We observed histamine release by magainin-2 amide from rat peritoneal mast cells (ED50 = 13 micrograms/ml) but not from human basophils. This histamine-releasing reaction from peritoneal mast cells was due to a secretory rather than cytolytic effect, i.e., release occurred without concomitant liberation of lactic dehydrogenase. Furthermore, the pretreatment of mast cells with magainin-2 amide did not desensitize cells against subsequent challenge with other secretagogues. Maximum histamine release occurred in less than a minute at 25 and 37 degrees C. The addition of Ca2+ was not required for histamine release, although release was enhanced by the addition of 0.3-1 mM Ca2+. The addition of 3 mM Ca2+ or Mg2+ was markedly inhibitory. The presence of Na+ or Cl- ions in the medium was not required for release. Therefore, histamine release is not due to the formation of anion-selective channels in the membrane of mast cells. The results indicated that the characteristics of histamine secretion induced by magainin-2 amide were unlike IgE-mediated release but were similar to the mechanism of release attributed to some other basic peptides and to compound 48/80.  相似文献   

5.
Abstract: Mast cells play a central role in both immediate allergic reactions and inflammation. A functional nerve-mast cell interaction has been proposed, given the morphological association between mast cells and neuropeptide-containing peripheral nerves. We now show that purified rat peritoneal mast cells contain large quantities of N -acetylaspartate (NAA; 747.50 nmol/mg of protein). Mast cell levels of NAA were rapidly reduced, by 64.0 and 86.4%, following treatment with compound 48/80 and mastoparan, respectively. These secretagogues strongly decreased mast cell histamine content over the same time period, suggesting also that NAA is stored in secretory granules. The data are the first to show that NAA is present in an immune effector cell type. Because NAA may be involved in myelin synthesis and glutamyl peptide metabolism, NAA released from mast cells following nervous or other stimuli could participate in neuroimmune interactions. Mast cells in multiple sclerosis plaques may contribute to the reported elevations in brain NAA in this disease.  相似文献   

6.
Showdomycin, a very slowly penetrating SH reagent, hardly affected the histamine release induced by any of secretagogues tested, suggesting no exposure of sulfhydryl groups involved in the granule secretion process on the cell surface. N-ethylmaleimide(NEM), a considerably penetrating SH reagent, almost completely inhibited histamine release induced by secretagogues such as compound 48/80, polymyxin B, concanavalin A or digitonin at 100 microM and by A23187 at 500 microM. However, (Ca2+-Mg2+)-ATPase activity was hardly inhibited by NEM modification at 500 microM. These findings suggest that plasma membrane divalent cation-activated ATPase is not involved directly in the granule secretion process of mast cells.  相似文献   

7.
To study why neonatal and young rats are resistant to the effects of some secretagogues, such as compound 48/80 and 2.5-S nerve growth factor, we examined peritoneal mast cells from 14–15-day-old rats (young rats) and compared them to peritoneal mast cells from adults. Peritoneal mast cells from young rats contain approximately one-tenth of the amount of histamine observed in adult peritoneal mast cells. However, both cell populations contained similar low levels of the mucosal mast cell-associated protease rat mast cell protease II. Histochemical analysis of peritoneal mast cells from young rats using safranin O and berberine sulphate suggested that only a portion of the granules of these cells contained heparin. At an ultrastructural level the young rat peritoneal mast cell contains relatively few granules. The majority of mast cells from young rats have a bilobed or indented nucleus which is only rarely observed in adult cells. Functionally, the young rat peritoneal mast cell demonstrates a significantly reduced histamine release in response to the connective tissue mast cellspecific secretagogues compound 48/80 and 2.5-S nerve growth factor. In contrast, the percent histamine release in response to the neurotransmitter substance P, which degranulates both connective tissue mast cells and intestinal mucosal mast cells, was similar in the adult cells and the young rat cells. This study demonstrates substantial differences between the young rat and adult peritoneal mast cells which may explain the ability of very young animals to withstand large doses of certain secretagogues.  相似文献   

8.
The effects of mastoparan and compound 48/80 on the activities of alpha beta gamma-trimeric GTP-binding proteins (G proteins) were studied with purified Go and Gi-1 which had been reconstituted into phospholipid vesicles. Pertussis toxin-catalyzed ADP-ribosylation of Go or Gi-1 was inhibited by mastoparan or compound 48/80, suggesting that the G proteins were dissociated into their constituent alpha- and beta gamma-subunits in the presence of these compounds. The steady-state rate of GTP hydrolysis catalyzed by Go or Gi-1 was stimulated by the two compounds. Both the stimulations were due to increases in the rate of the GDP-GTP exchange reaction occurring on the G proteins. However, the modes stimulation of the GTPase activity depended on the type of G protein used, and the stimulations caused by the two compounds were differently affected by pertussis toxin-catalyzed ADP-ribosylation of G proteins. Moreover, the mastoparan-induced stimulation of the GTPase activity was partially inhibited by compound 48/80. Thus, the two histamine secretagogues mastoparan and compound 48/80 appear to activate G proteins differently, though they interact with the signal-transducing proteins, at least partly, at a common binding site.  相似文献   

9.
The influence of PGP on compound 48/80-induced anaphylactoid reaction development in mice and on histamine secretion from rat peritoneal mast cells (RPMS) under their activation by compound 48/80 were investigated. Anaphylactoid reaction was caused by intraperitoneal injection of compound 48/80 into mice. The number of animals with manifestations of anaphylactoid reaction symptoms, the severity of these symptoms, the amount of died animals and the time of death were registering during an hour. Mast cells for in vitro investigations were obtained from rats’ peritoneal cavity. Secreted histamine was evaluated from formation of fluorescent product of it’s condensation with ortho-phthalaldehyde. The preventive injection of PGP in mice (15 min before compound 48/80) decreased the mortality rate of animals and intensity of anaphylactoid reaction symptoms. But PGP had no effect on histamine secretion from mast cells under their activation by compound 48/80 in vitro. Results show that there is a component in the mechanism of PGP protective effect under anaphylactoid reaction which is not connected with mast cells stabilization.  相似文献   

10.
The membrane-permeabilizing activities of mastoparans and related histamine-releasing agents were compared through measurements of K(+) efflux from bacteria, erythrocytes, and mast cells. Changes in bacterial cell viability, hemolysis, and histamine release, as well as in the shape of erythrocytes were also investigated. The compounds tested were mastoparans (HR1, a mastoparan from Polistes jadwagae, and a mastoparan from Vespula lewisii), granuliberin R, mast cell-degranulating peptide, and compound 48/80, as well as antimicrobial peptides, such as magainin I, magainin II, gramicidin S, and melittin. We used a K(+)-selective electrode to determine changes in the permeability to K(+) of the cytoplasmic membranes of cells. Consistent with the surface of mast cells becoming negatively charged during histamine release, due to the translocation of phosphatidylserine to the outer leaflet of the cytoplasmic membrane, histamine-releasing agents induced K(+) efflux from mast cells, dependent on their ability to increase the permeability of bacterial cytoplasmic membranes rich in negatively charged phospholipids. The present results demonstrated that amphiphilic peptides, possessing both histamine-releasing and antimicrobial capabilities, induced the permeabilization of the cytoplasmic membranes of not only bacteria but mast cells. Mastoparans increased the permeability of membranes in human erythrocytes at higher concentrations, and changed the normal discoid shape to a crenated form. The structural requirement for making the crenated form was determined using compound 48/80 and its constituents (monomer, dimer, and trimer), changing systematically the number of cationic charges of the molecules.  相似文献   

11.
Triton X-100 at concentrations preceding those which liberated histamine, produced dose-dependent inhibition of compound 48/80-induced histamine release from rat mast cells. Triton X-100 (0.00002 1/1) depleted ATP content in the mast cells and blocked compound 48/80-induced histamine release. The inhibition of compound 48/80-induced histamine release and depletion of the ATP content in the mast cells was reversed by glucose (10 mmole). It is concluded that inhibition by Triton X-100 of histamine release induced by compound 48/80 is dependent on inhibition of energy production.  相似文献   

12.
Functional mast cells have been isolated from the lamina propria of the small intestine of rats infected with the nematode Nippostrongylus brasiliensis. The cells released histamine on challenge with specific antigen, anti-rat IgE, concanavalin A, and calcium ionophores but were less responsive than peritoneal mast cells (MMC) from the same animals. Intestinal mucosa mast cells (PMC) were refractory to the action of the basic secretagogues peptide 401 from bee venom and compound 48/80. The anti-allergic compounds disodium cromoglycate (less than or equal to 10(-3) M), AH 9679 (less than or equal to 10(-4) M), and theophylline (less than or equal to 10(-2)) did not inhibit antigen-induced histamine secretion by MMC, although these compounds were effective against PMC. In contrast, doxantrazole (10(-5) to 10(-3) M) inhibited the secretion of histamine from both MMC and PMC in a comparable dose-dependent fashion. Thus, we have established that mast cells from different sites are functionally heterogeneous not only in their response to various stimuli for histamine secretion, but also in their responses to different pharmacologic modulators of secretion. It cannot be assumed that anti-allergic compounds effective against mast cells in one tissue site or organ will be equally efficacious against mast cells in other sites. The extent of this functional heterogeneity must be established, and its investigation may provide new insights into the biochemical events involved in mast cell secretion.  相似文献   

13.
Cytotoxicity of Vibrio vulnificus cytolysin on rat peritoneal mast cells   总被引:3,自引:0,他引:3  
Histamine has been thought to be a permeability enhancing factor in Vibrio vulnificus infection. The injection of living bacteria or purified V. vulnificus cytolysin (VVC) can cause lethality in mice by inducing hemoconcentration and increased vascular permeability. In the present study, we tried to identify whether histamine release causes the increased vascular permeability that is responsible for the lethal effect of VVC. Treatment of rat peritoneal mast cells with high concentrations of VVC caused the release of whole cellular histamine and lactate dehydrogenase (LDH). At concentrations less than 10 HU/ml, histamine and LDH were not released whereas preloaded 2-deoxy-D-glucose was rapidly effluxed with the concomitant decrease in cellular ATP. VVC-treated mast cells were refractory to the stimulation of histamine secretion by Compound 48/80 but remained fully responsive to Ca2+ plus GTP-gamma-S. These results indicate that histamine can be released from mast cells only when the concentration of VVC is high enough to cause the lysis of cells. At low concentrations, VVC does not induce the release of stored histamine from damaged cells. The intravenous injection of 80 HU purified VVC to rats, which can produce the calculated blood concentration of about 3 HU/ml, caused a marked increase in pulmonary vascular permeability, hemoconcentration and death. However, no increase in blood histamine level was detected. This level of VVC in rat blood was enough to cause severe hemoconcentration and lethality but might not be enough to cause cytolysis of the mast cells and resulting histamine release.  相似文献   

14.
Widespread experience indicates that application of suboptimal concentrations of stimulating ligands (secretagogues) to secretory cells elicits submaximal extents of secretion. Similarly, for permeabilized secretory cells, the extent of secretion is related to the concentration of applied intracellular effectors. We investigated the relationship between the extent of secretion from mast cells (assessed as the release of hexosaminidase) and the degranulation (exocytosis) responses of individual cells. For permeabilized mast cells stimulated by the effector combination Ca2+ plus GTP-gamma-S and for intact cells stimulated by the Ca2+ ionophore ionomycin, we found that exocytosis has the characteristics of an all-or-none process at the level of the individual cells. With a suboptimal stimulus, the population comprised only totally degranulated cells and fully replete cells. In contrast, a suboptimal concentration of compound 48/80 applied to intact cells induced a partial degree of degranulation. This was determined by observing the morphological changes accompanying degranulation by light and electron microscopy and also as a reduction in the intensity of light scattered at 90 degrees, indicative of a change in the cell-refractive index. These results may be explained by the existence of a threshold sensitivity to the combined effectors that is set at the level of individual cells and not at the granule level. We used flow cytometry to establish the relationship between the extent of degranulation in individual rat peritoneal mast cells and the extent of secretion in the population (measured as the percentage release of total hexosaminidase). For comparison, secretion was also elicited by applying the Ca2+ ionophore ionomycin or compound 48/80 to intact cells. For permeabilized cells and also for intact cells stimulated with the ionophore, levels of stimulation that generate partial secretion gave rise to bimodal frequency distributions of 90 degrees light scatter. In contrast, a partial stimulus to secretion by compound 48/80 resulted in a single population of partially degranulated cells, the degree of degranulation varying across the cell population. The difference between the all-or-none responses of the permeabilized or ionophore-treated cells and the graded responses of cells activated by compound 48/80 is likely to stem from differences in the effective calcium stimulus. Whereas cell stimulated with receptor-directed agonists can undergo transient and localized Ca2+ changes, a homogeneous and persistent stimulus is sensed at every potential exocytotic site in the permeabilized cells.  相似文献   

15.
Anti-IgE, con A or antigen caused an increase in the intracellular calcium concentration, [Ca2+]i, of mast cells. The increase occurred in two stages: a rapid initial rise caused by Ca-mobilization from intracellular Ca-stores and a second sustained rise caused by an influx of extracellular calcium (White, J.R., Pluznik, D.V., Ishizaka, K. & Ishizaka, T. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 8193-8197). The rapid initial rise was followed by a release of histamine, which seemed to coincide with the second rise. A23187 and compound 48/80 induced a rapid initial rise in [Ca2+]i, followed by a gradual decrease in [Ca2+]i, GMCHA-OPhBut, a specific pH 7 tryptase inhibitor (Muramatu, M., Ito, T., Takei, M. & Endo, K. (1988) Biol. Chem. Hoppe-Seyler 369, 617-625), strongly inhibited both the initial and second rises of [Ca2+]i, as well as histamine release by these secretagogues, and its effects on the initial rise were closely correlated with those on histamine release. Addition of GMCHA-OPhBut immediately after the initial rise strongly inhibited the second rise, thereby decreasing the final [Ca2+]i. These results strongly suggested a possible involvement of pH 7 tryptase, not only in Ca-mobilization leading to the initial rise in [Ca2+]i, but also in the second rise. Trapping of extracellular calcium by 3mM EGTA decreased both the initial rise in [Ca2+]i and histamine secretion induced by anti-IgE or con A; the magnitude of this effect depended on the time between induction and EGTA addition. Histamine release was closely correlated with the initial rise in [Ca2+]i. Similar results were obtained with A23187, but even 5 min after the addition of EGTA an initial rise of [Ca2+]i could still be induced, and histamine (30% of total histamine) was still released. However, A23187 did not induce a rise in [Ca2+]i in mast cells which had been exhaustively washed with Tyrode/Hepes solution containing 3mM EGTA, followed by suspension in the same solution. Even at 20 min after depletion of the extracellular calcium, compound 48/80 still caused an initial rise in [Ca2+]i to above half the maximal value, and histamine secretion was even less affected. The above results indicated that the initial rise in [Ca2+]i, due to Ca-mobilization, correlates with the histamine release promoted by the secretagogues described. On the other hand, isoproterenol strongly induced histamine secretion with no change of [Ca2+]i, while EGTA treatment prior to isoproterenol stimulation had no effect on histamine release, indicating a different secretion mechanism.  相似文献   

16.
Rat peritoneal mast cells respond to various secretagogues, such as ionophore A23187, concanavalin A (Ig E receptor cross-bridging) and compound 48/80 (membrane perturbing), to secrete histamine and to liberate arachidonic acid. Arachidonic acid release was made identifiable by pretreatment with BW755C, an inhibitor of both lipoxygenase and cyclo-oxygenase. The extent of arachidonic acid release varied among these three secretagogues. A23187 appeared to be most potent, whereas compound 48/80 was weakest. The sources of released arachidonic acids may be different depending on the types of stimulants. The stimulation with A23187 released arachidonic acid mainly from phosphatidylcholine and triacylglycerol. After treatment with concanavalin A and compound 48/80, in addition to phosphatidylcholine, phosphatidylinositol also appeared to serve as a donor of arachidonic acid.  相似文献   

17.
Rat peritoneal mast cells respond to various types of secretagogues, such as antigen (receptor-mediated), A23187 (calcium mobilizing), and compound 48/80 (membrane perturbing), and release arachidonic acid from membrane phospholipids prelabeled with [3H]arachidonate. The rate of arachidonic acid liberation varied from one stimulant to the other. Ionophore A23187 (0.1 micrograms/ml) appeared to be most potent in releasing arachidonate among the three stimulants at which doses each secretagogue caused almost equivalent histamine secretion. However, upon stimulation with these three secretagogues, the radioactivity of phosphatidylcholine (PC) was markedly reduced with a concomitant increase of arachidonate radioactivity. Hydrolysis of PC by phospholipase A2 is likely to be the major route of arachidonic acid liberation in either IgE-mediated or non-IgE activation in mast cells.  相似文献   

18.
Membrane phospholipid turnover was investigated during histamine release from rat mast cells. Addition of calcium ionophore A23187 (0.5 microgram/ml) to mast cells prelabeled with [3H]glycerol induced the rapid and progressive increase in phosphatidic acid (PA) and 1,2-diacylglycerol (DG), which was concomitant with the small rise in phosphatidylinositol (PI). Loss of the level in triacylglycerol (TG) was very marked. Polyamine compound 48/80 (5 micrograms/ml) was shown to cause rises in PA, 1,2-DG, and PI without any significant changes in TG. Both stimuli increased incorporation of exogenous [3H]glycerol into phospholipids, indicating the involvement of de novo synthesis in phospholipid metabolism. Studies with [3H]arachidonic acid-labeled mast cells showed an enhanced liberation of radioactive arachidonate and metabolites upon histamine release. There were associated decreases of radioactivity in phosphatidylcholine (PC) and TG when exposed to A23187, while phosphatidylethanolamine (PE) was degraded as a result of 48/80 activation. The transient increases of [3H]arachidonoyl-1,2-DG and PA were caused by 48/80, while A23187 showed a gradual rise in the radioactivity in these two lipid fractions. These findings reflect activation of phospholipase C. When mast cells were activated by low concentrations of A23187 (0.1 microgram/ml) and 48/80 (0.5 microgram/ml), different behaviors of PI metabolism were observed. An early degradation of PI and a subsequent formation of 1,2-DG and PA suggest that the lower concentrations of these agents stimulate the PI cycle initiated by PI breakdown rather than de novo synthesis. These results demonstrate that marked and selective changes in membrane phospholipid metabolism occur during histamine release from mast cells, and that these reactions seem to be controlled by the coordination of degradation and biosynthesis, depending on the type and the concentration of stimulants. A23187 stimulates arachidonate release perhaps via the cleavages of PC and TG, whereas 48/80 liberates arachidonate from PE.  相似文献   

19.
Phospholipid metabolisms in rat mast cells activated by ionophore A23187 and compound 48/80 were examined with reference to 'phosphatidylinositol (PI) cycle'. The addition of A23187 to [3H]glycerol-prelabeled mast cells induced a marked accumulation of the radioactivity in 1,2-diacylglycerol(DG) and phosphatidic acid(PA) within 10 to 30 sec. A great enhancement of [3H]glycerol incorporation into PA and PI was also detected during histamine release. On the other hand, 48/80 was far less effective than A23187 both in producing 1,2- DG and PA and in accerelating [3H]glycerol incorporation into PA and PI, despite the comparable ability of histamine release. The activity of Ca2+ uptake into mast cells, as measured by pulse-labeling with 45Ca2+, was increased when exposed to both of two agents. These data provide circumstantial evidence that phospholipid metabolisms, mainly de novo PI synthesis, may be a part of the triggering events for Ca2+ mobilization and secretory process. The PI metabolism induced by two different stimulants appears to behave in a different manner.  相似文献   

20.
K Saeki  S Ikeda  M Nishibori 《Life sciences》1983,32(26):2973-2980
When added to Ca2+-free Hanks' solution, Ca2+ (0.1-2.5 mM) had no significant effect on antigen-induced histamine release from rat mast cells, but Sr2+ (1.0-3.0 mM) dose-dependently increased the release. Ba2+ (1.0 and 2.0 mM) also enhanced the release. Ca2+ and Ba2+ inhibited compound 40/80-induced histamine release, in a dose-dependent manner. In ordinary Hanks' medium, theophylline and 3-isobutyl-1-methylxanthine (IBMX) dose-dependently inhibited the antigen-induced histamine release but these drugs were ineffective in Ca2+-free medium. Theophylline (1.0 mM) also inhibited compound 48/80-induced histamine release in the presence but not absence of Ca2+. There was an optimal Ca2+ concentration for the theophylline effect. Sr2+ but not Ba2+ could substitute for Ca2+ in supporting the theophylline effect. Theophylline (1.0 mM) and IBMX (1.0 mM) increased mast cell cyclic AMP levels both in the presence and absence of Ca2+. These results suggest that Ca2+ is required in the interaction of theophylline and specific sites on mast cells or in the mast cell response to theophylline which probably does not involve the cyclic AMP increase and is linked to the inhibition of histamine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号