首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The methods of Laplace transform were used to solve a mathematical model developed for percutaneous drug absorption. This model includes application and removal of the vehicle from the skin. A system of two linear partial differential equations was solved for the application period. The concentration of the medicinal agent in the skin at the end of the application period was used as the initial condition to determine the distribution of the drug in the skin following instantaneous removal of the vehicle. The influences of the diffusion and partition coefficients, clearance factor and vehicle layer thickness on the amount of drug in the vehicle and the skin were discussed.  相似文献   

2.

Background  

Certain drugs, for example scopolamine and timolol, show non-linear kinetic behavior during permeation process. This non-linear kinetic behavior is due to two mechanisms; the first mechanism being a simple dissolution producing mobile and freely diffusible molecules and the second being an adsorption process producing non-mobile molecules that do not participate in the diffusion process. When such a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, C, the donor concentration. The present paper studies the effect of the parameter value, C, when the region of the contact of the skin with drug, is a line segment on the skin surface. To confirm that dual-sorption process gives an explanation to non-linear kinetic behavior, the characteristic features that are used in one-dimensional models are (1) prolongation of half-life if the plot of flux versus time are straight lines soon after the vehicle removal, (2) the decrease in half-life with increase in donor concentration. This paper introduces another feature as a characteristic to confirm that dual-sorption model gives an explanation to the non-linear kinetic behavior of the drug. This new feature is "the prolongation of half-life is not a necessary feature if the plots of drug flux versus time is a non-linear curve, soon after the vehicle removal".  相似文献   

3.
Iontophoresis is a valuable method of noninvasive drug delivery for assessment of skin microvascular function, but it is important to consider and minimize its potential nonspecific electrical effects on blood flow. The use of sodium chloride (NaCl) instead of water as the iontophoresis vehicle has been reported to reduce these effects because it has a lower electrical resistance. However, this argument may not be valid when an agonist is added to the vehicle because its resistance will be changed. The aim of our study was to determine whether there is a difference in resistance between water and NaCl when used as vehicles for iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). Four cumulative doses of each drug, dissolved in either water or NaCl, were delivered via iontophoresis to the forearm skin of 14 healthy volunteers. We measured the resulting blood flow responses by using laser-Doppler imaging and the voltage across the electrodes for each delivery as an index of resistance. For ACh and SNP, there were no significant differences between the voltages measured when either water or NaCl was used as the vehicle. However, the blood flow responses to both agonists were significantly lower with NaCl (ACh: 25% lower, P < 0.001; SNP: 15% lower, P = 0.019). The use of NaCl is therefore unlikely to decrease any nonspecific electrical effects, and it may in fact reduce the effective dose of drug delivered. Deionized water is a better iontophoresis vehicle for the assessment of microvascular function in skin when using ACh and SNP.  相似文献   

4.
Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug–excipient relationships at the molecular level.  相似文献   

5.
In this study we have prepared various phosphatidyl choline based colloidal systems, namely liposomes, transfersomes, microemulsions and micelles, using similar excipients and compared their ability to deliver drugs into and through the skin under occlusive and non-occlusive conditions. Hydrophilic propranolol hydrochloride (PHCl) and lipophilic propranolol base (PB) were used as model drugs. All tested parameters, that is formulation composition, drug characteristics and testing conditions, influenced skin permeability and skin retention. A trend was observed showing that the skin permeation as well as skin retention decreases with the amount of phosphatidyl choline in the formulations for both tested model drugs (micelles > transfersomes > liposomes > microemulsion). The lipophilic model drug had higher skin permeability especially when incorporated into the systems containing mainly hydrophilic excipients. Skin retention, however, was not affected by the drug hydrophilicity to the same extent as skin permeability. Occlusion increased both skin retention and skin permeation for both model drugs.  相似文献   

6.
The goal of the present study was to develop and evaluate microsponge-based topical delivery system of mupirocin for sustained release and enhanced drug deposition in the skin. Microsponges containing mupirocin were prepared by an emulsion solvent diffusion method. The effect of formulation and process variables such as internal phase volume and stirring speed on the physical characteristics of microsponges were examined on optimized drug/polymer ratio by 32 factorial design. The optimized microsponges were incorporated into an emulgel base. In vitro drug release, ex vivo drug deposition, and in vivo antibacterial activity of mupirocin-loaded formulations were studied. Developed microsponges were spherical and porous, and there was no interaction between drug and polymer molecules. Emulgels containing microsponges showed desired physical properties. Drug release through cellulose dialysis membrane showed diffusion-controlled release pattern and drug deposition studies using rat abdominal skin exhibited significant retention of active in skin from microsponge-based formulations by 24 h. The optimized formulations were stable and nonirritant to skin as demonstrated by Draize patch test. Microsponges-based emulgel formulations showed prolonged efficacy in mouse surgical wound model infected with S. aureus. Mupirocin was stable in topical emulgel formulations and showed enhanced retention in the skin indicating better potential of the delivery system for treatment of primary and secondary skin infections, such as impetigo, eczema, and atopic dermatitis.  相似文献   

7.
The influence of the vehicle on the release and permeation of fluconazole, a topical antifungal drug dissolved in Jojoba oil was evaluated. Series of Cutina lipogels (Cutina CPA [cetyl palmitate], CBS [mixture of glyceryl stearate, cetearyl alcohol, cetyl palmitate, and cocoglycerides], MD [glyceryl stearate], and GMS [glyceryl monostearate]) in different concentrations as well as gel microemulsion were prepared. In-vitro drug release in Sorensens citrate buffer (pH 5.5) and permeation through the excised skin of hairless mice, using a modified Franz diffusion cell, were performed. The rheological behavior and the apparent viscosity values for different gel bases were measured before and after storage under freezing conditions at −4 °C and were taken as measures for stability of network structure.Candida albicans was used as a model fungus to evaluate the antifungal activity of the best formula achieved. The results of in vitro drug release and its percutaneous absorption showed that the highest values from gel microemulsion were assured. The rheological behavior of the prepared systems showed pseudoplastic (shear-thinning) flow indicating structural breakdown of the existing intermolecular interactions between polymeric chains. Moreover, the stability study revealed no significant difference between viscosity before and after storage for different formulae except for CPA Cutina lipogel (using analysis of variance [ANOVA] test at level of significance .05). The antifungal activity of fluconazole showed the widest zone of inhibition with gel microemulsion. The gel microemulsion is an excellent vehicle for fluconazole topical drug delivery.  相似文献   

8.
Upon topical administration, a high penetration rate of antifungal drug into the infected site is desirable to reduce treatment length and systemic side effects which occur especially after a prolonged peroral administration. Thermogelling formulations composed of poloxamer 407, medium chain triglycerides, isopropyl alcohol, dimethyl isosorbide, and water for topical application were developed, and a lipophilic drug terbinafine HCl (TBF) was incorporated. Previously, a remarkable high permeation rate of a hydrophilic drug 5-aminolevulinic acid from this vehicle was evident compared to different creams from German Pharmacopoeia. By varying the composition of vehicle constituents, a broad range of consistencies and appearances was obtained. Up to 4% TBF could be solubilized in the vehicle. TBF fluxes at steady state across human stratum corneum from these formulations were higher than those from the German Pharmacopoeia Basiscreme Deutscher Arzneimittel Codex and a marketed product at similar concentration of 1%. TBF fluxes increased along with a higher content of TBF in the formulation. The amount of TBF retained in stratum corneum was higher compared to those from both standards of comparison (p < 0.01). The thermodynamic activity of TBF in the thermogelling formulation was lower compared to those in other formulations. Therefore, the nature of the vehicle and its interaction with TBF are suggested to play a significant role in explaining higher fluxes along with higher TBF content. Differential scanning calorimetry measurements revealed comparable T2 and T3 endothermic shifts from all examined formulations suggesting equal influences to the skin lipids.  相似文献   

9.
Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.KEY WORDS: celecoxib, drug delivery systems, liquid crystalline system, monoolein, skin permeation  相似文献   

10.
目的:在冷暴露实验动物模型上,评价盐酸哌唑嗪(Pra)和消旋山莨菪碱(Ani)对大鼠、小鼠肢端皮肤温度的调节作用。方法:将80只大鼠随机分为8组,室温下灌胃给药,60 min后放入指定温度(5℃、18℃)环境中冷暴露,并于给药后180 min和300 min使用红外摄像仪测定实验动物尾部近心端1/3处的皮肤温度,观察皮肤温度的变化,评价药效。结果:单独使用Pra对大鼠肢端皮肤温度无影响,对小鼠肢端皮肤温度提高效果较差;而单独使用Ani对大鼠和小鼠肢端皮肤温度均无提高作用;两药联用后实验动物尾温得到显著提高,且具有一定剂量依赖性。结论:Pra和Ani联用能有效提高冷暴露大鼠、小鼠的肢端皮肤温度,并且不会降低体心温度。  相似文献   

11.
The effects of a topically applied combination of nonivamide and nicoboxil in improving skin perfusion and preventing distal flap necrosis were tested in a random-pattern dorsal skin flap model. Forty male Wistar rats were randomized into two groups (n = 20), and a standardized dorsal random-pattern skin flap was raised on each rat. Animals in the experimental group were treated with the topically applied drug combination four times per day for 6 days, whereas in the control group only a placebo ointment was applied each time. Skin flap viability was evaluated on day 7, and the extent of skin flap necrosis was compared between the two groups. The topically applied combination of nonivamide and nicoboxil resulted in a statistically significant decrease in skin flap necrosis, compared with the control group (mean percentage of skin flap necrosis in the nonivamide/nicoboxil-treated group, 22.6 +/- 6.0 percent; control group, 36.8 +/- 4.3 percent; p< 0.05). The topical combination of nonivamide and nicoboxil was effective in reducing ischemic necrosis in failing random-pattern skin flaps in this rat model. The results of this study suggest that such a topical drug application might have significant effects in the reduction of ischemic necrosis in the distal parts of skin flaps, and this treatment might also have applications as prophylactic therapy for risky skin flaps.  相似文献   

12.
A novel drug-in-adhesive matrix was designed and prepared. A thermoplastic elastomer, styrene–isoprene–styrene (SIS) block copolymer, in combination with tackifying resin and plasticizer, was employed to compose the matrix. Capsaicin was selected as the model drug. The drug percutaneous absorption, adhesion properties, and skin irritation were investigated. The results suggested that the diffusion through SIS matrix was the rate-limiting step of capsaicin percutaneous absorption. [SI] content in SIS and SIS proportions put important effects on drug penetration and adhesion properties. The chemical enhancers had strong interactions with the matrix and gave small effect on enhancement of drug skin permeation. The in vivo absorption of samples showed low drug plasma peaks and a steady and constant plasma level for a long period. These results suggested that the possible side effects of drug were attenuated, and the pharmacological effects were enhanced with an extended therapeutic period after application of SIS matrix. The significant differences in pharmacokinetic parameters produced by different formulations demonstrated the influences of SIS copolymer on drug penetrability. Furthermore, the result of skin toxicity test showed that no skin irritation occurred in guinea pig skin after transdermal administration of formulations.Key words: adhesion, in vivo absorption, skin irritation, thermoplastic elastomer, transdermal drug delivery  相似文献   

13.
目的建立耐甲氧西林金黄葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)小鼠皮肤脓肿感染模型,观察脓肿形成动态变化及药物对脓肿愈合的影响。方法 45只SPF级裸鼠随机分为PBS对照组、感染组及给药组,用临床分离鉴定的ST-239型MRSA菌株皮下注射感染裸鼠,对脓肿的形成过程进行时相性观察,测定脓肿体积的变化,并通过H.E染色观察皮肤的组织病理学改变。结果 PBS处理组小鼠皮肤无脓肿形成,显微镜下皮肤各层结构清楚;感染组和给药组可见到典型的脓肿,临床症状的时相性过程明显,感染组小鼠皮肤真皮层的胶原纤维消失,可见大量炎性细胞浸润,给药组小鼠的脓肿体积在整个实验周期内低于感染组,且在第5天时与感染组相比有差异。结论成功建立MRSA小鼠皮肤脓肿感染模型,该模型的建立可为进一步研究来源于临床MRSA菌株的病原特性、发病机制、治疗方法等提供可靠的动物模型。  相似文献   

14.
The purpose of the present study was to investigate the effect of nanoemulsions as a carrier vehicle of hydrophilic drug for transdermal delivery. The response surface methodology with a mixture design was used to evaluate the effect of ingredient levels of nanoemulsion formulations including cosurfactant (isopropyl alcohol, 20∼30%), surfactant (mixed of Brij 30 and Brij 35, 20∼30%), and distilled-water (34.5∼50.0%) on properties of the drug-loaded nanoemulsions including physicochemical characters and drug permeability through rat skin. The result showed that the hydrophilic drug in aqueous solution with or without penetration enhancer could not transport across rat skin after 12 h of application. Used nanoemulsions as carrier vehicle, the permeation rate of drug was significantly increased from 0 to 63.23 µg/cm2/h and the lag time was shortened from more than 12 h to about 2.7∼4.0 h. Moreover, the drug-loaded nanoemulsion formulation also showed physicochemical stability after 3 month storage at 25°C and 40°C.  相似文献   

15.
Despite its broad-spectrum antifungal properties, voriconazole has many side effects when administered systemically. The aim of this work was to develop an ethosomal topical delivery system for voriconazole and test its potential to enhance the antifungal properties and skin delivery of the drug. Voriconazole was encapsulated into various ethosomal preparations and the effect of phospholipid and ethanol concentrations on the ethosomes properties were evaluated. The ethosomes were evaluated for drug encapsulation efficiency, particle size and morphology and antifungal efficacy. Drug permeability and deposition were tested in rat abdominal skin. Drug encapsulation efficiency of up to 46% was obtained and it increased with increasing the phospholipid concentration, whereas the opposite effect was observed for the ethanol concentration. The ethosomes had a size of 420–600?nm and negative zeta potential. The particle size of the ethosomes increased by increasing their ethanol content. The ethosomes achieved similar inhibition zones against Aspergillus flavus at a 2-fold lower drug concentration compared with drug solution in dimethyl sulfoxide. The ex vivo drug permeability through rat abdominal skin was ~6-fold higher for the ethosomes compared with the drug hydroalcoholic solution. Similarly, the amount of drug deposited in the skin was higher for the ethosomes and was dependent on the ethanol concentration of the ethosomes. These results confirm that voriconazole ethosomal preparations are promising topical delivery systems that can enhance the drug antifungal efficacy and improve its skin delivery.  相似文献   

16.
Penetration and distribution of thiocolchicoside from a commercially available foam (Miotens® 0.25%, w/v) through human excised full-thickness skin were evaluated using two different in vitro apparatus: a Franz diffusion cell and a Saarbruecken penetration model-based cell. In order to evaluate the intrinsic capability of the drug to penetrate into the skin, a simple drug aqueous solution prepared at the same drug concentration as Miotens® was also tested. Results showed that both apparatus were suitable to study thiocolchicoside penetration into human skin. Penetrated drug amounts were comparable using the two apparatus, probably because skin acts as “sink” for the drug. Miotens® was found to significantly promote thiocolchicoside accumulation into full human skin thickness in comparison with the simple drug solution. The mixture of propylene glycol and propylene glycol diperlargonate contained into Miotens® foam has been proven to be effective to promote penetration of thiocolchicoside into human skin.  相似文献   

17.
Kumar R  Katare OP 《AAPS PharmSciTech》2005,6(2):E298-E310
The purpose of this review is to give an insight into the considerable potential of lecithin organogels (LOs) in the applications meant for topical drug delivery. LOs are clear, thermodynamically stable, viscoelastic, and biocompatible jelly-like phases, chiefly composed of hydrated phospholipids and appropriate organic liquid. These systems are currently of interest to the pharmaceutical scientist because of their structural and functional benefits. Several therapeutic agents have been formulated as LOs for their facilitated transport through topical route (for dermal or transdermal effect), with some very encouraging results. The improved topical drug delivery has mainly been attributed to the biphasic drug solubility, the desired drug partitioning, and the modification of skin barrier function by the organogel components. Being thermodynamically stable, LOs are prepared by spontaneous emulsification and therefore posses prolonged shelf life. The utility of this novel matrix as a topical vehicle has further increased owing to its very low skin irritancy potential. Varied aspects of LOs viz formation, composition, phase behavior, and characterization have been elaborated, including a general discussion on the developmental background. Besides a comprehensive update on the topical applications of lecithin organogels, the review also includes a detailed account on the mechanistics of organogelling. Published: October 6, 2005  相似文献   

18.
We previously reported that topical application of [Nle4,D-Phe7]alpha-MSH, a superpotent analogue of alpha-melanocyte stimulating hormone, to mice induces a darkening of follicular melanocytes throughout the skin. We now report that the melanotropin analogue can be delivered across mouse but not rat skin in an in vitro model system. Passage of the analogue from the topically applied vehicle (polyethylene glycol) across the skin into a subcutaneous receiving vessel was demonstrated by both bioassay as well as by radioimmunoassay. The bioassay data demonstrate that percutaneous absorption of the melanotropin did not result in loss of biological activity of the peptide. The differential penetration of the peptide across rodent skin reveals that one cannot predict percutaneous absorption of a substance across the stratum corneum from studies on a single species. The present results are the first to demonstrate, by direct quantitative measurements, that a bioactive peptide can be delivered across the vertebrate integument in vitro. These studies point out the potential of a topically applied melanotropin for tanning of the skin and possibly for treatment of certain hypopigmentary disorders.  相似文献   

19.
Onychomycosis is associated with the cutaneous fungal infection of the nail and the nail folds (skin surrounding the nail). It is therefore important to target drug delivery into the nail folds along with nail plate and the nail bed. Systematic and strategic selection of the penetration enhancers specific for the skin and the nail is discussed. Twelve penetration enhancers were screened for their ability to improve solubility, in vitro nail penetration, in vitro skin permeation, and in vitro skin penetration of the antifungal drug ciclopirox olamine. In contrast to transdermal drug delivery, the main selection criteria for skin penetration enhancer in topical drug delivery were increased drug accumulation in the epidermis and minimal permeation across the skin. Thiourea improved the solubility and nail penetration of ciclopirox olamine. It also showed enhancement in the transungual diffusion of the drug. Propylene glycol showed a 12-fold increase in solubility and 3-fold increase in epidermal accumulation of ciclopirox olamine, while minimizing the transdermal movement of the drug. Thiourea was the selected nail permeation enhancer and propylene glycol was the selected skin penetration enhancer of ciclopirox olamine. A combination of the selected enhancers was also explored for its effect on drug delivery to the nail and nail folds. The enhancer combination reduced the penetration of ciclopirox in the skin and also the permeation through the nail. The proposed preformulation strategy helps to select appropriate enhancers for optimum topical delivery and paves way towards an efficient topical formulation for passive transungual drug delivery.  相似文献   

20.
Recently, we demonstrated the safety use of calendula oil/chitosan microcapsules as a carrier for both oral and topical deliveries. We also reported the improved biological activity towards skin cells and Staphylococcus aureus of phyllanthin containing chitosan microcapsules. However, the possibility of both oral and topical applications was still necessary to be further studied. Here we investigated that both oral and topical applications of chitosan-based microcapsules were tested using hydrocortisone succinic acid (HSA) and 5-fluorouracil (5-FU), respectively. The drug loading efficiency, particle size, surface morphology and chemical compositions of both drug loaded microcapsules were confirmed by UV-vis spectrophotometer, particle size analyzer, scanning electron microscope and Fourier transform infrared spectroscopy. The in vitro release studies revealed that both HSA and 5-FU could be released form chitosan microcapsules. The mean adrenocorticotropic hormone concentration in HSA loaded microcapsule mice plasma was detected to be lower than that of water control. One hundred micrograms per milliliter of 5-FU containing microcapsules exhibited a stronger growth inhibition towards skin keratinocytes than that of free 5-FU. In vitro drug delivery model demonstrated the delivery of 5-FU from microcapsule treated textiles into nude mice skin. Further uses of the drug loaded microcapsules may provide an efficiency deliverable tool for both oral and topical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号