首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The possibility to visualize the NMDA recognition site with [3H]CGS 19755in vitro autoradiography was evaluated in rat brain and spinal cord sections and thereafter used to study the distribution of the NMDA recognition site in rat and mouse spinal cord. The [3H]CGS 19755 binding was concentrated to the dorsal horn, in particular to the substantia gelatinosa. Notable binding was also seen in the intermediate area and ventral horn, while some binding was observed in the funiculi. No major differences were seen in [3H]CGS 19755 binding at various levels of the rat or mouse spinal cord, although a more dense binding was seen in the mouse. A similar distribution of the [3H]CGS 19755 specific binding and the NMDA receptor associated ion-channel site, labeled with [3H]TCP, was found in the mouse spinal cord. Taken together, our data indicate that the NMDA recognition site can be visualized in rat and mouse spinal cord byin vitro [3H]CGS 19755 autoradiography.Abbreviations NMDA N-methyl-D-aspartate - CGS 19755 Cis-4-phosphonomethyl-2-piperidine carboxylic acid - D-AP5 D(—)-2-Amino-5-phosphonopentanoic acid - TCP N-(1-2-thienylcyclohexyl)-3,4-piperidine - MK-801 (±)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate - AMPA -Amino-3-hydroxy-5-methyl-isoxazolepropionic acid - kainate 2-Carboxy-3-carboxymethyl-4-isopropenyl pyrrolidine - CGP 39653 D,L-(E)-2-amino-4-propyl-5-phosphonopentenoic acid  相似文献   

2.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

3.
Light microscopic autoradiography was used to visualize the neuroanatomical distribution of nicotinic receptors in rat brain using a novel radioligand, [3H]methylcarbamylcholine (MCC). Specific [3H]MCC binding to slide-mounted tissue sections of rat brain was saturable, reversible and of high affinity. Data analysis revealed a single population of [3H]MCC binding sites with a Kd value of 1.8 nM and Bmax of 20.1 fmol/mg protein. Nicotinic agonists and antagonists competed for [3H]MCC binding sites in slide-mounted brain sections with much greater potency than muscarinic drugs. The rat brain areas containing the highest densities of [3H]MCC binding were in thalamic regions, the medial habenular nucleus and the superior colliculus. Moderate densities of [3H]MCC binding were seen over the anterior cingulate cortex, the nucleus accumbens, the zona compacta of substantia nigra and ventral tegmental area. Low densities of [3H]MCC binding were found in most other brain regions. These data suggest that [3H]MCC selectively labels central nicotinic receptors and that these receptors are concentrated in the thalamus, the medial habenular nucleus and the superior colliculus of the rat brain.  相似文献   

4.
[3H]H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 ([3H]CTOP), a potent and highly selective mu opioid antagonist, was used to localize the mu receptors in rat brain by light microscopic autoradiography. Radioligand binding studies with [3H]CTOP using slide-mounted tissue sections of rat brain produced a Kd value of 1.1 nM with a Bmax value of 79.1 fmol/mg protein. Mu opioid agonists and antagonists inhibited [3H]CTOP binding with high affinity (IC50 values of 0.2-2.4 nM), while the delta agonist DPDPE, delta antagonist ICI 174,864, and kappa agonist U 69, 593 were very weak inhibitors of [3H]CTOP binding (IC50 values of 234-3631 nM). Light microscopic autoradiography of [3H]CTOP binding sites revealed regions of high density (nucleus of the solitary tract, clusters in the caudate-putamen, interpeduncular nucleus, superior and inferior colliculus, subiculum, substantia nigra zona reticulata, medial geniculate, locus coeruleus and dorsal motor nucleus of the vagus) and regions of moderate labeling (areas outside of clusters in the caudate-putamen, cingulate cortex, claustrum and nucleus accumbens). The cerebral cortex (parietal) showed a low density of [3H]CTOP binding.  相似文献   

5.
We have utilized the LKB Ultrofilm method of autoradiography to anatomically localize putative M1 and M2 muscarinic receptor subtypes in human stellate ganglia. Ten micron sections were labeled in vitro with either 1 nM of the classical antagonist [3H](-)quinuclidinyl benzilate ([3H](-)QNB) or 20 nM of the non-classical antagonist [3H]pirenzepine ([3H]PZ), using 1 microM atropine sulfate to define non-specific binding for both ligands. Our results indicate that [3H](-)QNB and [3H]PZ binding sites are distributed within the principal ganglion cells and nerve bundles.  相似文献   

6.
We recently reported that adenine acts as a neurotrophic factor independent of adenosine or P2 receptors in cultured Purkinje cells [Watanabe S. et al. (2003) J. Neurosci. Res. 74, 754-759], suggesting the presence of specific receptors for adenine in the brain. In this study, the characterization of adenine-binding activity in the rat brain was performed to further characterize the receptor-like adenine-binding sites. Specific binding sites for [(3)H]adenine were detected in membrane fractions prepared from rat brains. The kinetics of [(3)H]adenine binding to membranes was described by the association and dissociation rate constants, 8.6 x 10(5) M(-1) min(-1) and 0.118 +/- 0.045 min(-1), respectively. A single binding site for [(3)H]adenine with a K (D) of 157.1 +/- 20.8 nM and a B (max) of 16.3 +/- 1.1 pmol/mg protein (n = 6) was demonstrated in saturation experiments. A displacement study involving various related compounds showed that the [(3)H]adenine binding was highly specific for adenine. It was also found that [(3)H]adenine-binding activity was inhibited by adenosine, although other adenosine receptor ligands were ineffective as to [(3)H]adenine binding. The brain, especially the cerebellum and spinal cord, showed the highest [(3)H]adenine-binding activity of the tissues examined. These results are consistent with the presence of a novel adenine receptor in rat brain membranes.  相似文献   

7.
While studies with [(3)H]D-aspartate ([(3)H]d-Asp) illustrate specific interactions with excitatory amino acid transporters (EAATs), new insights into the pharmacological characteristics and localization of specific EAAT subtypes depend upon the availability of novel ligands. One such ligand is [(3)H]-(2S,4R)-4-methylglutamate ([(3)H]4MG) which labels astrocytic EAATs in homogenate binding studies. This study examined the utility of [(3)H]4MG for binding and autoradiography in coronal sections of rat brain. Binding of [(3)H]4MG was optimal in 5mM HEPES buffer containing 96 mM NaCl, pH 7.5. Specific binding of [(3)H]4MG exhibited two components, but was to a single site when glutamate receptor (GluR) sites were masked with kainate (KA; 1 microM): t(1/2) approximately 5 min, K(d) 250 nM and B(max) 5.4 pmol/mg protein. Pharmacological studies revealed that [(3)H]4MG, unlike [(3)H]d-Asp, labeled both EAAT and ionotropic GluR sites. Further studies employed 6-cyano-7-nitroquinoxaline (30 microM) to block GluR sites, but selective EAAT ligands displayed lower potency than expected for binding to transporters relative to drugs possessing mixed transporter/receptor activities. Autoradiography in conjunction with densitometry with [(3)H]4MG and [(3)H]d-Asp revealed wide, but discrete distributions in forebrain; significant differences in binding levels were found in hippocampus, nucleus accumbens and cortical sub-areas. Although EAAT1 and EAAT2 components were detectable using 3-methylglutamate and serine-O-sulphate, respectively, the majority of [(3)H]4MG binding was to KA-related sites. Overall, in tissue sections [(3)H]4MG proved unsuitable for studying the autoradiographic localization of EAATs apparently due to its inability to selectively discriminate Na(+)-dependent binding to Glu transporters.  相似文献   

8.
The equilibrium binding characteristics of the tritiated GABAA agonist, 5-aminomethyl-3-isothiazolol (thiomuscimol) are described. Using the filtration technique to separate bound- from free-ligand, [3H]thiomuscimol was shown to bind to the GABA(A) receptor site(s) in a saturable manner with a Kd value of 28+/-6.0 nM and a Bmax value of 50+/-4.0 fmol/mg original tissue. In parallel binding experiments, the Kd and Bmax values for [3H]muscimol were determined to be 5.4+/-2.8 nM and 82+/-11 fmol/mg original tissue, respectively. In binding assays using the centrifugation technique, Kd and Bmax values for [3H]thiomuscimol were found to be 116+/-22 nM and 154 13 fmol/mg original tissue, respectively, whereas a Kd value of 16+/-1.8 nM and a Bmax value of 155+/-8.0 fmol/mg original tissue were determined for [3H]muscimol. In comparative inhibition studies using the GABA(A) antagonist SR 95531 and a series of specific GABAA agonists, the binding sites for [3H]thiomuscimol and [3H]muscimol were shown to exhibit similar pharmacological profiles. Autoradiographic studies disclosed similar regional distribution of [3H]thiomuscimol and [3H]muscimol binding sites in rat brain. Highest densities of binding sites were detected in cortex, hippocampus, and cerebellum, whereas low densities were measured in the midbrain structures of rat cortex. In conclusion, the equilibrium GABA(A) receptor binding characteristics of [3H]thiomuscimol are very similar to those of [3H]muscimol.  相似文献   

9.
R D Schwartz 《Life sciences》1986,38(23):2111-2119
The relative distribution of muscarinic and nicotinic cholinergic receptors labeled with [3H]acetylcholine was determined using autoradiography. [3H]Acetylcholine binding to high affinity muscarinic receptors was similar to what has been described for an M-2 distribution: highest levels of binding occurred in the pontine and brainstem nuclei, anterior pretectal area and anteroventral thalamic nucleus, while lower levels occurred in the caudate-putamen, accumbens nucleus and primary olfactory cortex. Nicotinic receptors were labeled with [3H]acetylcholine to the greatest extent in the interpeduncular nucleus, several thalamic nuclei, medial habenula, presubiculum and superior colliculus, and to the least extent in the hippocampus and inferior colliculus. By using autoradiography to localize cholinergic binding sites throughout the brain it was observed that the distributions of high affinity muscarinic and nicotinic sites labeled with the endogenous ligand, [3H]acetylcholine are different from each other and are different from distributions of muscarinic and nicotinic sites labeled with muscarinic and nicotinic antagonists.  相似文献   

10.
[3H] Nitrendipine binding was partially blocked by the presence of tetrodotoxin in developing spinal cord neurons. In young cultures, 1 micron tetrodotoxin displaced 29% and 26% of [3H] nitrendipine binding from the high and low affinity binding sites, respectively. In one month old cultures, tetrodotoxin had no effect on [3H] nitrendipine binding. The interaction between tetrodotoxin and nitrendipine in young cultures suggests ligand binding site similarities during development.  相似文献   

11.
In vitro labeling of tissue sections with [3H]sulpiride has been utilized in the present study to autoradiographically localize D2-dopamine receptors in the rat brain. Preliminary biochemical studies, using slide-mounted tissue sections, were performed to define the optimal labeling conditions for this binding. Autoradiograms were generated by apposition of the labeled tissue sections to tritium-sensitive film. Specific binding sites for [3H]sulpiride were localized to the caudate-putamen, nucleus accumbens, olfactory tubercle, glomerular layer of the olfactory bulb, pituitary, laminae I and III of the entorhinal cortex, substantia nigra, lateral mammillary nucleus and the stratum-lacunosum moleculare of the hippocampus. The high selectivity of [3H]sulpiride for the D2-dopamine receptor indicates that it is a valuable tool for the autoradiographic localization and quantitation of neuroleptic receptors.  相似文献   

12.
The investigation of [3H] PCP and [3H] TCP binding properties to rat cerebrum and cerebellum resulted in the demonstration of multiple binding sites for the two drugs. In the two tissue preparations PCP had a lower affinity than TCP. In membranes from the cerebrum an equal number of high affinity binding sites were present for [3H] PCP and [3H] TCP. However, low affinity binding sites were two times more numerous for [3H] PCP than for [3H] TCP. In the cerebellum, the number of high and low affinity sites labeled by the two radioligands was identical, but the number of high affinity sites was about 7 fold lower than in the cerebrum. Taken together these results may indicate that in the cerebrum [3H] PCP labels other sites than NMDA/PCP receptor(s), maybe sigma receptors and/or the dopamine uptake complex. In human cerebral cortex samples [3H] TCP also bound to two different sites. The number of high and low affinity sites were 12 and 3 times, respectively, less abundant than in the rat cerebrum. Low affinity sites were of higher affinity (5 times) than corresponding sites in the rat brain. In the human cerebellum [3H] TCP binding parameters were identical to those measured in the same region in the rat.  相似文献   

13.
Abstract: High-affinity [3H]5-hydroxytryptamine ([3H]5-HT) binding in the rat spinal cord is similar to that demonstrated in the frontal cortex. [3H]5-HT binds with nearly the same affinity to sites in both tissues. Furthermore, similar patterns of displacement of [3H]5–HT were seen in both tissues, with either spiperone or LSD as the unlabeled ligand. This high-affinity binding appears to be to multiple sites, since displacement studies using 2 nM [3H]5–HT result in Hill coefficients less than unity for spiperone, LSD, and quipazine [Hill coefficients (nH): 0.44, 0.39, 0.40, respectively]. These sites apparently have an equal affinity for [3H]5-HT, since unlabeled 5-HT did not discriminate between them. Thus, the high-affinity [3H]5-HT binding in the spinal cord may be analogous to that observed in the frontal cortex, where two populations of sites have previously been described (5-HTIA, 5-HTIB). In addition to the multiple high-affinity spinal cord binding sites, a low-affinity [3H]5-HT binding component was also identified. A curvilinear Scatchard plot results from saturation studies using [3H]5-HT (0.5–100 nM) in the spinal cord. The plot can be resolved into sites having apparent dissociation constants of 1.4 nM and 57.8 nM for the high-and low-affinity components, respectively. Additional support for a change in affinity characteristics at higher radioligand concentrations comes from the displacement of 30 nM [3H]5-HT by the unlabeled ligand. A nonparallel shift in the dissociation curve was seen, resulting in a Hill coefficient less than unity (0.32). None of the specifically bound [3H]5-HT in the spinal cord is associated with the 5-HT uptake carrier, since fluoxetine, an inhibitor of 5-HT uptake, does not alter binding characteristics. In addition, a 5-HT binding site analogous to the site designated 5-HT, was not apparent in the spinal cord. Ketanse-rin and cyproheptadine, drugs that are highly selective for 5-HT, sites, did not displace [3H]5-HT from spinal tissue, and [3H]spiperone, a radioligand that binds with high affinity to 5-HT2 sites, did not exhibit saturable binding in the tissue. Thus, the 5-HT2 binding site reported in other regions of the central nervous system, and the serotonin uptake carrier do not appear to contribute to the multiple binding sites demonstrated in the spinal cord.  相似文献   

14.
We have investigated the binding properties of [(3)H]quisqualate to rat metabotropic glutamate (mGlu) 1a and 5a receptors and to rat and human brain sections. Saturation isotherms gave K:(D) values of 27 +/- 4 and 81 +/- 22 nM: for mGlu1a and mGlu5a receptors, respectively. Several compounds inhibited the binding to mGlu1a and mGlu5a receptors concentration-dependently. (S:)-4-Carboxyphenylglycine, (S:)-4-carboxy-3-hydroxyphenylglycine, and (R,S)-1-aminoindan-1,5-dicarboxylic acid, which completely inhibited [(3)H]quisqualate binding to the mGlu5a receptor, were inactive in a functional assay using this receptor. The distribution and abundance of binding sites in rat and human brain sections were studied by quantitative receptor radioautography and image analysis. Using 10 nM: [(3)H]quisqualate, a high density of binding was detected in various brain regions with the following rank order of increasing levels: medulla, thalamus, olfactory bulb, cerebral cortex, spinal cord dorsal horn, olfactory tubercle, dentate gyrus molecular layer, CA1-3 oriens layer of hippocampus, striatum, and cerebellar molecular layer. The ionotropic component of this binding could be inhibited by 30 microM: kainate, revealing the distribution of mGlu1+5 receptors. The latter were almost completely inhibited by the group I agonist (S:)-3,5-dihydroxyphenylglycine. The binding profile correlated well with the cellular sites of synthesis and regional expression of the respective group I receptor proteins revealed by in situ hybridization histochemistry and immunohistochemistry, respectively.  相似文献   

15.
J P Joad  T B Casale 《Life sciences》1987,41(13):1577-1584
Quinuclidinyl benzilate, a muscarinic antagonist, has previously been used in its tritiated form ([3H]-QNB) to study the lung muscarinic receptor. We investigated whether a newer iodinated form of QNB ([125I]-QNB) of higher specific activity would be an appropriate ligand to study the human peripheral lung muscarinic receptor. Both the tritiated and iodinated ligands bound specifically to human lung at 23 degrees C. At 37 degrees C the specific binding of [3H]-QNB increased slightly, but no specific binding of [125I]-QNB was found. The data from multiple equilibrium binding experiments covering a wide range of radiolabeled QNB concentrations were combined and analyzed using the computer modeling program, LIGAND. The tritiated QNB identified a single affinity human lung binding site with a Kd of 46 +/- 9 pM and a receptor concentration of 34 +/- 3 fmol/mg protein. The iodinated QNB identified a single higher affinity human lung binding site (Kd = 0.27 +/- 0.32 pM) of much smaller quantity (0.62 +/- 0.06 fmol/mg protein). Competition studies comparing the binding of unlabeled QNB relative to labeled QNB indicated that unlabeled QNB had the same Kd as that measured for [3H]-QNB, but a 5 log greater Kd than that measured for [125I]-QNB. Other muscarinic receptor agonists and antagonists competed with [3H]-QNB, but not [125I]-QNB for binding to muscarinic receptors with the expected magnitude and rank order of potency. We conclude that of the 2 radiolabeled forms of QNB available, only the tritiated form should be used to study the human peripheral lung muscarinic receptor.  相似文献   

16.
The specific binding of the A1 adenosine receptor ligand, [3H]CHA, was investigated in membrane fractions prepared from brains of eleven vertebrate species and ganglia of four invertebrate species. Substantial amounts of specific [3H]CHA binding sites were demonstrated in brain membranes of all vertebrate species examined; however, [3H]CHA binding sites were not detectable in nervous tissue of the invertebrate species studied. The densities of [3H]CHA binding sites in vertebrate brains increase in higher vertebrates. Moreover, the pharmacological characteristics of the site labeled by [3H]CHA in two divergent classes of vertebrates were similar. The broad phylogenetic distribution of A1 adenosine receptors in primitive as well as advanced vertebrate species suggests a fundamental role for adenosine in neuronal modulation.  相似文献   

17.
Abstract: Binding of 1-[1-(2-[3H]thienyl)cyclohexyl]piperidine ([3H]TCP) to mouse brain and spinal cord membranes was studied using compounds selective for the NMDA-coupled 1-(1-phenylcyclohexyl)piperidine (PCP) and/or σ recognition sites. In both tissues, [3H]TCP labeled two populations of binding sites. Density of the low-affinity sites was approximately the same in both tissues, but the population of the high-affinity [3H]TCP sites was three times bigger in the brain than in the spinal cord. Self- and cross-displacement studies showed that the high-affinity [3H]TCP binding sites could be identical with NMDA receptor-coupled PCP sites, whereas the low-affinity [3H]TCP sites may be associated with σ binding sites in both tissues. The NMDA-coupled PCP sites labeled in the presence of 6.25 n M [3H]TCP constituted a much higher percentage of the total binding in the brain (75%) than in the spinal cord (44%). Consistent with this, reintroduction of glycine and glutamate significantly increased, but DA antagonists significantly inhibited [3H]TCP binding in the brain but not in the spinal cord. Together, these data suggest that a large component of [3H]TCP-labeled binding sites in the spinal cord may be associated with σ but not the NMDA receptor-coupled PCP sites.  相似文献   

18.
Cultured adult skin fibroblasts were studied for binding and functional evidence of muscarinic receptors in order to assess their utility as a model of cholinergic function in affective illness. Saturable, specific, high affinity binding could be demonstrated in intact cells from some cell lines with [3H]-NMS, but not [3H]-QNB, presumably because of intracellular trapping of unbound [3H]-QNB. [3H]-NMS specific binding indicated a single site with a KD of approximately 210 pM. [3H]-NMS was displaced by cholinergic agonists and antagonists with relative affinities similar to muscarinic receptors in brain. Many cell lines, however, showed no specific binding. No functional response to carbachol could be demonstrated with respect to inhibition of isoproterenol-stimulated cyclic AMP formation, stimulation of cyclic GMP formation or stimulation of phosphoinositide hydrolysis in any cell line regardless of either high or no specific [3H]-NMS binding.  相似文献   

19.
The binding of [3H] DAMGO, a highly selective ligand for mu-opiate receptors, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. [3H] DAMGO bound to membranes of brain regions and spinal cord at a single high affinity site. The receptor density (Bmax value) and apparent dissociation constant (Kd value) of [3H] DAMGO to bind to membranes of hippocampus, corpus striatum, pons and medulla, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of [3H] DAMGO in membranes of hypothalamus and midbrain of SHR rats was significantly higher than in WKY rats but the Kd values in the two strains did not differ. On the other hand, the Bmax value of [3H] DAMGO in membranes of amygdala of SHR rats was lower than that of WKY rats but the Kd values in the two strains were similar. It is concluded that SHR rats have higher density of mu-opiate receptors in hypothalamus and midbrain but lower density in amygdala in comparison with WKY rats, and that such differences in the distribution of mu-opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

20.
The first visualization of enkephalinase (neutral metalloendopeptidase, E.C.3.4.24.11) in rat brain was obtained by autoradiography, using a new tritiated inhibitor: [3H]N-[( R,S )3-(N-hydroxy) carboxamido-2-benzyl propanoyl]glycine (3H-HCBP-Gly). The preliminary analysis of sections clearly showed a discrete localization of enkephalinase in enkephalin enriched regions, such as caudate nucleus, putamen, globus pallidus, and substantia nigra. Moreover 3H-HCBP-Gly binding also occurred in choroid plexus and spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号