首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
O. Nečas  A. Svoboda 《Protoplasma》1973,77(4):453-466
Summary Urea in 4 to 8 M concentrations causes aggregation of the plasma membrane particles in yeast cells. Particle counting and the direction of the thread-like deformed particles indicates the translational movement of the particles along the supporting membrane. The aggregation of the particles was prevented by fixation of the cells with glutaraldehyde. Urea changed also the splitting characteristics of the membranes: faces of the plasma membrane covered with the particles were exposed less often. Yeast protoplasts were mostly desintegrated by urea solutions. In resistant protoplasts the particles were normally dispersed. Due to a strong hypertony of the urea solutions profound changes in plasma membrane invaginations were induced in yeast cells.  相似文献   

2.
The membrane potential (MP) of the unicellular green alga Micrasterias torreyi was found to be −46 to −47 mV (when cultured in Waris medium). In contrast to plant cells in general, light-dark changes neither affected the potential or the membrane resistance in Micrasterias . In comparison, the freshwater plant Elodea showed a light-induced hyperpolarization due to the activating effect of light on the plasma membrane adenosine triphosphatases (PM ATPases) through a signal from chloroplasts. In Micrasterias , the PM H+-ATPase inhibitors Na-orthovanadate and diethylstilbestrol depolarized the potential, but it remained at the same level in light and dark. On the other hand, fusicoccin, which activates the PM H+-ATPases, hyperpolarized the potential clearly (to −56 mV). 3-(3',4'-dichlorophenyl)-1,1-dimethylurea, which blocks the electron transport chain from photosystem (PS)II to PSI and thereby prevents the possible signal transmission from chloroplasts to the PM, depolarized the MP slightly, but did not affect the (lacking) light changes either. The results indicate the presence of a continuous (low) activity of PM H+-ATPases in Micrasterias , which is not stimulated by light. The lack of rapid light-induced changes in Micrasterias MP may be due to an unusual functioning of giant chloroplasts in the ion metabolism of the Micrasterias cell.  相似文献   

3.
Although vesicular transport of the H-Ras protein from the Golgi to the plasma membrane is well known, additional trafficking steps, both to and from the plasma membrane, have also been described. Notably, both vesicular and nonvesicular transport mechanisms have been proposed. The initial trafficking of H-Ras to the plasma membrane was therefore examined in more detail. In untreated cells, H-Ras appeared at the plasma membrane more rapidly than a protein carried by the conventional exocytic pathway, and no H-Ras was visible on Golgi membranes in >80% of the cells. H-Ras was still able to reach the plasma membrane when COP II-directed transport was disrupted by two different mutant forms of Sar1, when COP I-mediated vesicular traffic from the endoplasmic reticulum to the Golgi was inhibited with brefeldin A, or when microtubules were disrupted by nocodazole. Although some H-Ras was present in the secretory pathway, protein that reached the membranes of the endoplasmic reticulum-Golgi intermediate compartment was unable to move further in the presence of nocodozale. These results identify an alternative mechanism for H-Ras trafficking that circumvents conventional COPI-, COPII-, and microtubule-dependent vesicular transport. Thus, H-Ras has two simultaneous but distinct means of transport and need not depend on vesicular trafficking for its delivery to the plasma membrane.  相似文献   

4.
To investigate the role of aquaporin-mediated water transport during pollen grain germination and tube growth, Arabidopsis thaliana plasma membrane intrinsic proteins (PIPs) were expressed in pollen of Lilium longiflorum (lily). Successful expression of AtPIPs in particle-bombarded lily pollen grains was monitored by co-expression with fluorescent proteins and single-cell RT-PCR, and by measuring the water permeability coefficient (P(os)) in swelling assays using protoplasts prepared from transformed pollen grains and tubes. Expression of AtPIP1;1 and AtPIP1;2 in pollen grains resulted in P(os) values similar to those measured in nontransformed pollen grain protoplasts (6.65 +/- 2.41 microm s(-1)), whereas expression of AtPIP2 significantly increased P(os) (AtPIP2;1, 13.79 +/- 6.38; AtPIP2;2, 10.16 +/- 3.30 microm s(-1)). Transformation with combinations of AtPIP1 and AtPIP2 did not further enhance P(os). Native pollen tube protoplasts showed higher P(os) values (13.23 +/- 4.14 microm s(-1)) than pollen grain protoplasts but expression of AtPIP2;1 (18.85 +/- 7.60 microm s(-1)) did not significantly increase their P(os) values. Expression of none of the tested PIPs had any effect on pollen tube growth rates. The ectopic expression of AtPIP2s in lily pollen increased the water permeability of the plasma membrane in pollen grains, but not in pollen tubes. The measured endogenous water permeability does not limit water uptake during tube growth, but has to be regulated to prevent tube bursting.  相似文献   

5.
Uptake of the lipophilic cation triphenylmethylphosphonium into mesophyll protoplasts of oat (Avena sativa L. cv. “Garry”) approaches equilibrium at 3 to 4 hours. The resulting external and internal concentrations are then used with the Nernst equation to obtain a membrane potential of −62 millivolts, inside negative. Potentials calculated in this manner are depolarized by adding 2 mm sodium azide and 50 μm carbonyl cyanide m-chlorophenylhydrazone as well as by increasing the external proton and potassium concentrations. The depolarizations are qualitatively similar to those seen when oat mesoyphll cells are measured in situ with microelectrodes. It is concluded that due to the lack of turgor and fragility of protoplasts, estimations of their membrane potential may be made more reliably, under some conditions, with lipophilic cations than with microelectrodes.  相似文献   

6.
《Biophysical journal》2022,121(18):3334-3344
Recent work has established that axons have a periodic skeleton structure comprising of azimuthal actin rings connected via longitudinal spectrin tetramer filaments. This structure endows the axon with structural integrity and mechanical stability. Additionally, voltage-gated sodium channels follow the periodicity of the active-spectrin arrangement, spaced ~190 nm segments apart. The impact of this periodic arrangement of sodium channels on the generation and propagation of action potentials is unknown. To address this question, we simulated an action potential using the Hodgkin-Huxley formalism in a cylindrical compartment, but instead of using a homogeneous distribution of voltage-gated sodium channels in the membrane, we applied the experimentally determined periodic arrangement. We found that the periodic distribution of voltage-gated sodium channels does not significantly affect the generation or propagation of action potentials but instead leads to large, localized sodium action currents caused by high-density sodium nanodomains. Additionally, our simulations show that the distance between periodic sodium channel strips could control axonal excitability, suggesting a previously underappreciated mechanism to regulate neuronal firing properties. Together, this work provides a critical new insight into the role of the periodic arrangement of sodium channels in axons, providing a foundation for future experimental studies.  相似文献   

7.
A method for studying ion uptake in enzymatically isolated protoplasts from the yeast, Saccharomyces cerevisiae, is described. The kinetics of K+ and Rb+ uptake, metabolic proton extrusion and cell electrophoretic mobility bave been determined. Enzymic removal of the cell wall does not significantly alter the above-mentioned properties of the yeast cells. It is concluded that studies of these properties can be performed equally well with intact yeast cells or protoplasts. However, in studies aimed at determining effects of complex organic substances, e.g., antibiotics, on plasma membrane function the use of protoplasts is recommended. The effectiveness of the antibiotic, Dio-9, for example, in reversing the metabolic proton extrusion into a net proton influx is at least 50 times higher after enzymic removal of the yeast cell wall.  相似文献   

8.
Poly(ethyleneglycol) (PEG), anchored at the surface of liposomes via the conjugation to a lipid, is commonly used for increasing the liposome stability in the blood stream. In order to gain a better understanding of the protective properties of interfacial polymers, we have studied the binding of melittin to PEG-lipid-containing membranes as well as the melittin-induced efflux of a fluorescent marker from liposomes containing PEG-lipids. We examined the effect of the polymer size by using PEG with molecular weights of 2000 and 5000. In addition, we studied the role of the anchoring lipid by comparing PEG conjugated to phosphatidylethanolamine (PE) which results in a negatively charged PEG-PE, with PEG conjugated to ceramide (Cer) which provides the neutral PEG-Cer. Our results show that interfacial PEG does not prevent melittin adsorption onto the interface. In fact, PEG-PE promotes melittin binding, most likely because of attractive electrostatic interactions with the negative interfacial charge density of the PEG-PE-containing liposomes. However, PEG-lipids limit the lytic potential of melittin. The phenomenon is proposed to be associated with the change in the polymorphic tendencies of the liposome bilayers. The present findings reveal that the protective effect associated with interfacial hydrophilic polymers is not universal. Molecules like melittin can sense surface charges borne by PEG-lipids, and the influence of PEG-lipids on liposomal properties such as the polymorphic propensities may be involved in the so-called protective effect.  相似文献   

9.
Ras proteins must be localized to the inner surface of the plasma membrane to be biologically active. The motifs that effect Ras plasma membrane targeting consist of a C-terminal CAAX motif plus a second signal comprising palmitoylation of adjacent cysteine residues or the presence of a polybasic domain. In this study, we examined how Ras proteins access the cell surface after processing of the CAAX motif is completed in the endoplasmic reticulum (ER). We show that palmitoylated CAAX proteins, in addition to being localized at the plasma membrane, are found throughout the exocytic pathway and accumulate in the Golgi region when cells are incubated at 15 degrees C. In contrast, polybasic CAAX proteins are found only at the cell surface and not in the exocytic pathway. CAAX proteins which lack a second signal for plasma membrane targeting accumulate in the ER and Golgi. Brefeldin A (BFA) significantly inhibits the plasma membrane accumulation of newly synthesized, palmitoylated CAAX proteins without inhibiting their palmitoylation. BFA has no effect on the trafficking of polybasic CAAX proteins. We conclude that H-ras and K-ras traffic to the cell surface through different routes and that the polybasic domain is a sorting signal diverting K-Ras out of the classical exocytic pathway proximal to the Golgi. Farnesylated Ras proteins that lack a polybasic domain reach the Golgi but require palmitoylation in order to traffic further to the cell surface. These data also indicate that a Ras palmitoyltransferase is present in an early compartment of the exocytic pathway.  相似文献   

10.
11.
Poly(ethyleneglycol) (PEG), anchored at the surface of liposomes via the conjugation to a lipid, is commonly used for increasing the liposome stability in the blood stream. In order to gain a better understanding of the protective properties of interfacial polymers, we have studied the binding of melittin to PEG-lipid-containing membranes as well as the melittin-induced efflux of a fluorescent marker from liposomes containing PEG-lipids. We examined the effect of the polymer size by using PEG with molecular weights of 2000 and 5000. In addition, we studied the role of the anchoring lipid by comparing PEG conjugated to phosphatidylethanolamine (PE) which results in a negatively charged PEG-PE, with PEG conjugated to ceramide (Cer) which provides the neutral PEG-Cer. Our results show that interfacial PEG does not prevent melittin adsorption onto the interface. In fact, PEG-PE promotes melittin binding, most likely because of attractive electrostatic interactions with the negative interfacial charge density of the PEG-PE-containing liposomes. However, PEG-lipids limit the lytic potential of melittin. The phenomenon is proposed to be associated with the change in the polymorphic tendencies of the liposome bilayers. The present findings reveal that the protective effect associated with interfacial hydrophilic polymers is not universal. Molecules like melittin can sense surface charges borne by PEG-lipids, and the influence of PEG-lipids on liposomal properties such as the polymorphic propensities may be involved in the so-called protective effect.  相似文献   

12.
Over periods of up to a few seconds the plasma membrane of isolated rye protoplasts behaves elastically with an area modulus of 230 mN · m?1. Over longer periods, the area increases with time under large tension and decreases under sufficiently small tension, suggesting that material is incorporated into or depleted from the plane of the membrane.  相似文献   

13.
In many prey species aggregation of individuals is a defensive strategy commonly employed in response to predators and predator-related cues. However, very little work has explored this adaptive response in laboratory rats. It is known that individual rats show characteristic defensive responses to predator odors, such as hiding, avoidance, inhibition of foraging, feeding and reproduction, and risk assessment directed toward the odor source. However, whether these species-typical responses in individuals are altered in the presence of other conspecifics is yet to be characterized. The present study therefore examined the defensive response of groups of two rats (dyads) or four rats (quads) to two unconditioned stressors: bright ambient light and cat odor (a 2g ball of cat fur). The dyads and quads were formed from familiar cage mates and test sessions (20 min) occurred in a large open arena (1200 mm(2)) to which the rats had been extensively habituated under dark conditions. The results showed that when quads of rats were exposed to either cat odor or bright light in this arena, they showed characteristic increases in close social proximity, termed "huddling". A tight grouping of 3 (triplet) or 4 (quad) rats was commonly seen in response to cat fur, while triplets were more commonly seen in response to bright light. Interestingly there was no evidence for increased social proximity in dyads exposed to either stressor, only in quads. However, cat odor caused other signs of fear (such as decreased locomotor activity and increased defecation) in both quads and dyads. It is concluded that huddling is a rodent defensive strategy in rats when anxiogenic stimuli are encountered by larger groups of rats.  相似文献   

14.
The protective effect of Ca2+, Zn2+ and H+ against membrane damage induced by different haemolytic agents has been studied by measuring monovalent cation leakage and haemolysis of erythrocytes, and phosphoryl[3H]choline and adenine nucleotide leakage from Lettre cells prelabelled with [3H]choline. The protective effect of Ca2+ and Zn2+ on erythrocytes damaged by Staphylococcus aureus alpha-toxin, Sendai virus or melittin is unaffected by the addition of A23187, even though this ionophore greatly increases the uptake of 45Ca2+ or 65Zn2+. The same result has been found for the protective effect of Zn2+ on Lettre cells damaged by S. aureus alpha-toxin, Sendai virus, melittin or Triton X-100. Leakage of phosphoryl[3H]choline from prelabelled Lettre cells is inhibited if extracellular pH is lowered; lowering the intracellular pH without affecting the extracellular pH, affords little protection. It is concluded that Ca2+, Zn2+ and H+ protect cells against membrane damage induced by haemolytic agents by an action at the extracellular side of the plasma membrane.  相似文献   

15.
Evidence is presented that endocytosis-deficient Saccharomyces cerevisiae end4 yeast cells rapidly internalize the fluorescent phospholipid analogues 1-palmitoyl-2-{6-[7-nitro-2,1, 3-benzoxadiazol-4-yl(NBD)amino] caproyl}phosphatidylcholine (P-C6-NBD-PtdCho) and P-C6-NBD-phosphatidylserine (P-C6-NBD-PtdSer). Both analogues redistributed between the exoplasmic and cytoplasmic leaflet with a half-time of < 15 min at 0 degrees C. The plateau of internalized analogues was about 70%. Transbilayer movement is probably protein-mediated, as the flip-flop of both analogues was very slow in liposomes composed of plasma-membrane lipids. Rapid analogue internalization was not abolished on depletion of intracellular ATP by about 90%. For P-C6-NBD-PtdCho only was a moderate decrease in the plateau of internalized analogues of about 20% observed, while that of P-C6-NBD-PtdSer was not affected. The Drs2 protein plays only a minor role, if any, in the rapid transbilayer movement of analogues in S. cerevisiae end4 cells. In S. cerevisiae end4 Deltadrs2 cells harbouring both an end4 allele and a drs2 null allele, about 60% and 50% of P-C6-NBD-PtdCho and P-C6-NBD-PtdSer, respectively, became internalized within 15 min at 0 degrees C. The preferential orientation of P-C6-NBD-PtdSer to the cytoplasmic leaflet is in qualitative agreement with the sequestering of endogenous phosphatidylserine to the cytoplasmic leaflet, as assessed by binding of annexin V. Virtually no binding of annexin V to spheroplasts of the parent wild-type strain or the mutant strains was observed. Likewise, no difference in the exposure of endogenous aminophospholipids to the exoplasmic leaflet between these strains was found by labelling with trinitrobenzenesulfonic acid. Thus, lipid asymmetry, at least of aminophospholipids, was preserved in S. cerevisiae end4 cells independently of the presence of the Drs2 protein.  相似文献   

16.
Protoplasts were enzymically isolated from 2-week-old non-acclimated rye ( Secale cereale L. cv. Puma) seedlings. They were resuspended in isotonic sorbitol with different concentrations (0–10%) of dimethyl sulfoxide (DMSO). The survival of the protoplasts frozen in isotonic sorbitol solutions declined at temperatures below the freezing point with the LT50 being -8°C. Addition of DMSO to the osmoticum increased survival at freezing temperatures. The optimum concentration of DMSO was 4% and lowered the LT50 to -19°C. Freeze-fracture studies of the plasma membrane revealed aparticulate lipid lamellae at -4°C, but the first appearance of lateral phase separations, striations and inverted cylindrical micelles (hexagonal11-type structures) occurred at -6°C. At lower temperatures, -8 and -10°C, the occurrence of nonbilayer structures became more common. The addition of DMSO decreased the incidence of the ultrastructural changes. With 2 or 4% DMSO, non-bilayer structures were not observed at temperatures above -10°C. Instead, striations and H11-type structures were observed at - 15 and -20°C.  相似文献   

17.
Accumulation of the amyloid protein (Abeta) in the brain is an important step in the pathogenesis of Alzheimer's disease. However, the mechanism by which Abeta exerts its neurotoxic effect is largely unknown. It has been suggested that the peptide can bind to the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). In this study, we examined the binding of Abeta1-42 to endogenous and recombinantly expressed alpha7nAChRs. Abeta1-42 did neither inhibit the specific binding of alpha7nAChR ligands to rat brain homogenate or slice preparations, nor did it influence the activity of alpha7nAChRs expressed in Xenopus oocytes. Similarly, Abeta1-42 did not compete for alpha-bungarotoxin-binding sites on SH-SY5Y cells stably expressing alpha7nAChRs. The effect of the Abeta1-42 on tau phosphorylation was also examined. Although Abeta1-42 altered tau phosphorylation in alpha7nAChR-transfected SH-SY5Y cells, the effect of the peptide was unrelated to alpha7nAChR expression or activity. Binding studies using surface plasmon resonance indicated that the majority of the Abeta bound to membrane lipid, rather than to a protein component. Fluorescence anisotropy experiments indicated that Abeta may disrupt membrane lipid structure or fluidity. We conclude that the effects of Abeta are unlikely to be mediated by direct binding to the alpha7nAChR. Instead, we speculate that Abeta may exert its effects by altering the packing of lipids within the plasma membrane, which could, in turn, influence the function of a variety of receptors and channels on the cell surface.  相似文献   

18.
19.
The plasma membrane of the yeast Saccharomyces cerevisiae is devoid of lipid-synthesizing enzymes, but contains all classes of bilayer-forming lipids. As the lipid composition of the plasma membrane does not match any of the intracellular membranes, specific trafficking of lipids from internal membranes, especially the endoplasmic reticulum and the Golgi, to the cell periphery is required. Although the secretory pathway is an obvious route to translocate glycerophospholipids, sphingolipids and sterols to the plasma membrane, experimental evidence for the role of this pathway in lipid transport is rare. Addressing this issue in a systematic way, we labeled temperature-sensitive secretory yeast mutants (sec mutants) with appropriate lipid precursors, isolated the plasma membranes at high purity and quantified labeled lipids of this compartment. Shifting sec mutants to the restrictive temperature reduced transport of both proteins and lipids to the plasma membrane, indicating that the latter compounds are also trafficked to the cell periphery through the protein secretory pathway. However, efficient sec blocks did not abrogate protein and lipid transport, suggesting that parallel pathway(s) for the translocation of membrane components to the plasma membrane of yeast must exist.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号