首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Epidermal melanocytes are skin cells specialized in melanin production. Activation of the melanocortin 1 receptor (MC1R) on melanocytes by α-melanocyte-stimulating hormone (α-MSH) induces synthesis of the brown/black pigment eumelanin that confers photoprotection from solar UV radiation (UVR). Contrary to keratinocytes, melanocytes are slow proliferating cells that persist in the skin for decades, in an environment with high levels of UVR-induced reactive oxygen species (ROS). We previously reported that in addition to its role in pigmentation, α-MSH also reduces oxidative stress and enhances the repair of DNA photoproducts in melanocytes, independent of melanin synthesis. Given the significance of ROS in carcinogenesis, here we investigated the mechanisms by which α-MSH exerts antioxidant effects in melanocytes. We show that activation of the MC1R by α-MSH contributes to phosphorylation of p53 on serine 15, a known requirement for stabilization and activation of p53, a major sensor of DNA damage. This effect is mediated by the cAMP/PKA pathway and by the activation of phosphoinositide 3-kinase (PI3K) ATR and DNA protein kinase (DNA-PK). α-MSH increases the levels of 8-oxoguanine DNA glycosylase (OGG1) and apurinic apyrimidinic endonuclease 1 (APE-1/Ref-1), enzymes essential for base excision repair. Nutlin-3, an HDM2 inhibitor, mimicked the effects of α-MSH resulting in reduced phosphorylation of H2AX (γ-H2AX), a marker of DNA damage. Conversely, the p53 inhibitor pifithrin-α or silencing of p53 abolished the effects of α-MSH and augmented oxidative stress. These results show that p53 is an important target of the downstream MC1R signaling that reduces oxidative stress and possibly malignant transformation of melanocytes.  相似文献   

2.
8-Oxo-7,8-dihydroguanine (8-oxoG), arguably the most abundant base lesion induced in mammalian genomes by reactive oxygen species, is repaired via the base excision repair pathway that is initiated with the excision of 8-oxoG by OGG1. Here we show that OGG1 binds the 8-oxoG base with high affinity and that the complex then interacts with canonical Ras family GTPases to catalyze replacement of GDP with GTP, thus serving as a guanine nuclear exchange factor. OGG1-mediated activation of Ras leads to phosphorylation of the mitogen-activated kinases MEK1,2/ERK1,2 and increasing downstream gene expression. These studies document for the first time that in addition to its role in repairing oxidized purines, OGG1 has an independent guanine nuclear exchange factor activity when bound to 8-oxoG.  相似文献   

3.
Opiates such as morphine or heroin may promote cell apoptosis and cause dysfunction of immune cells. In simian immunodeficiency virus (SIV)-infected lymphocytic cells, however, morphine may protect the cells from apoptotic lysis and allow the virus to continue to replicate. To further explore this apparently antithetical effect of opiates, we evaluated in the present study the effects of morphine on human lymphocytic CEM x174 cells induced to undergo apoptosis in the presence of actinomycin D. It was found that induction of apoptosis (characterized by DNA laddering) by actinomycin D was accompanied by a stimulation of the expression of active (phosphorylated) form of p53. Pretreatment of the cells with 10nM morphine caused a transient, naloxone-reversible suppression of the appearance of activated p53 and the generation of DNA laddering. Parallel evaluation of the growth of CEM x174 indicated that morphine treatment delays the inception of cell death triggered by actinomycin D. Inasmuch as Bcl-2 suppresses while Bax accelerates apoptosis, treatment of cells with morphine reduced the expression of Bax and enhanced the expression of Bcl-2. Taken together, morphine, through binding at the opioid receptor, may protect lymphocytic cells from apoptotic lysis if cell death is initiated by apoptosis-inducing agents such as human immunodeficiency virus (HIV), SIV or actinomycin D.  相似文献   

4.
Muscle redox disturbances and oxidative stress have emerged as a common pathogenetic mechanism and potential therapeutic intervention in some muscle diseases. Parthenolide (PTL), a sesquiterpene lactone found in large amounts in the leaves of feverfew, possesses anti-inflammatory, anti-migraine, and anticancer properties. Although PTL was reported to alleviate cancer cachexia and improve skeletal muscle characteristics in a cancer cachexia model, its actions on oxidative stress-induced damage in C2C12 myoblasts have not been reported and the regulatory mechanisms have not yet been defined. In our study, PTL attenuated H2O2-induced growth inhibition and morphological changes. Furthermore, PTL exhibited scavenging activity against reactive oxygen species and protected C2C12 cells from apoptosis in response to H2O2. Meanwhile, PTL suppressed collapse of the mitochondrial membrane potential, thereby contributing to normalizing H2O2-induced autophagy flux and mitophagy, correlating with inhibiting degradation of mitochondrial marker protein TIM23, the increase in LC3-II expression and the reduction of mitochondria DNA. Besides its protective effect on mitochondria, PTL also prevented H2O2-induced lysosomes damage in C2C12 cells. In addition, the phosphorylation of p53, cathepsin B, and Bax/Bcl-2 protein levels, and the translocation of Bax from the cytosol to mitochondria induced by H2O2 in C2C12 cells was significantly reduced by PTL. In conclusion, PTL modulates oxidative stress-induced mitophagy and protects C2C12 myoblasts against apoptosis, suggesting a potential protective effect against oxidative stress-associated skeletal muscle diseases.  相似文献   

5.
6.
7.
Oxidative damage to mitochondrial DNA (mtDNA) has been implicated as a causative factor in many disease processes and in aging. We have recently discovered that different cell types vary in their capacity to repair this damage, and this variability correlates with their ability to withstand oxidative stress. To explore strategies to enhance repair of oxidative lesions in mtDNA, we have constructed a vector containing a mitochondrial transport sequence upstream of the sequence for human 8-oxoguanine DNA glycosylase. This enzyme is the glycosylase/AP lyase that participates in repair of purine lesions, such as 8-oxoguanine. Western blot analysis confirmed that this recombinant protein was targeted to mitochondria. Enzyme activity assays showed that mitochondrial extracts from cells transfected with the construct had increased enzyme activity compared with cells transfected with vector only, whereas nuclear enzyme activity was not changed. Repair assays showed that there was enhanced repair of oxidative lesions in mtDNA. Additional studies revealed that this augmented repair led to enhanced cellular viability as determined by reduction of the tetrazolium compound to formazan, trypan blue dye exclusion, and clonogenic assays. Therefore, targeting of DNA repair enzymes to mitochondria may be a viable approach for the protection of cells against some of the deleterious effects of oxidative stress.  相似文献   

8.
7,8-Dihydro-8-oxoguanine (8oxoG) is a major mutagenic base lesion formed when reactive oxygen species react with guanine in DNA. The human 8oxoG DNA glycosylase (hOgg1) recognizes and initiates repair of 8oxoG. hOgg1 is acknowledged as a bifunctional DNA glycosylase catalyzing removal of the damaged base followed by cleavage of the backbone of the intermediate abasic DNA (AP lyase/β-elimination). When acting on 8oxoG-containing DNA, these two steps in the hOgg1 catalysis are considered coupled, with Lys249 implicated as a key residue. However, several lines of evidence point to a concurrent and independent monofunctional hydrolysis of the N-glycosylic bond being the in?vivo relevant reaction mode of hOgg1. Here, we present biochemical and structural evidence for the monofunctional mode of hOgg1 by design of separation-of-function mutants. Asp268 is identified as the catalytic residue, while Lys249 appears critical for the specific recognition and final alignment of 8oxoG during the hydrolysis reaction.  相似文献   

9.
Curcumin has anti‐oxidant, anti‐cancer and anti‐carcinogen property. Our laboratory had previously reported that, curcumin treatment induces reactive oxygen species (ROS) generation in HT‐29 cell line, an effect contradictory to its anti‐oxidant property. This study evaluates the role of p53 in curcumin mediated ROS generation and cell death. Curcumin induced ROS was determined by 2’,7’‐dichlorofluorescein and apoptosis by Hoechst33342/PI staining in HT‐29 and HCT‐116 cell lines. ROS generation occurs within 1 hour of 40 µM curcumin treatment and a reduction was observed by third hour in HCT‐116 insinuating p53 involvement. N‐acetyl cysteine (NAC) pre‐treatment effectively quenched ROS and inhibited membrane potential loss in HT‐29, but less effective in HCT‐116. Mitochondrial membrane potential loss is evident with 10 and 40 µM curcumin in HCT‐116 and at 40 µM curcumin in HT‐29. Total p53 protein level increase was observed by 24 hours in HCT‐116 upon NAC pre‐treatment. Our results indicate that curcumin induces ROS mediated cell death in colon adenocarcinoma cell lines and may be mediated via p53.  相似文献   

10.
Cell-death programs executed in the pancreas under pathological conditions remain largely undetermined, although the severity of experimental pancreatitis has been found to depend on the ratio of apoptosis to necrosis. We have defined mechanisms by which apoptosis is induced in pancreatic acinar cells by the oxidant stressor menadione. Real-time monitoring of initiator caspase activity showed that caspase-9 (66% of cells) and caspase-8 (15% of cells) were activated within 30 min of menadione administration, but no activation of caspase-2, -10, or -12 was detected. Interestingly, when caspase-9 activation was inhibited, activation of caspase-8 was increased. Half-maximum activation (t(0.5)) of caspase-9 occurred within approximately 2 min and was identified at or in close proximity to mitochondria, whereas t(0.5) for caspase-8 occurred within approximately 26 min of menadione application and was distributed homogeneously throughout cells. Caspase-9 but not caspase-8 activation was blocked completely by the calcium chelator BAPTA or bongkrekic acid, an inhibitor of the mitochondrial permeability transition pore. In contrast, caspase-8 but not caspase-9 activation was blocked by the destruction of lysosomes (preincubation with Gly-Phe beta-naphthylamide, a cathepsin C substrate), loss of lysosomal acidity (bafilomycin A1), or inhibition of cathepsin L or D. Using pepstatin A-BODIPY FL conjugate, we confirmed translocation of cathepsin D out of lysosomes in response to menadione. We conclude that the oxidative stressor menadione induces two independent apoptotic pathways within pancreatic acinar cells: the classical mitochondrial calcium-dependent pathway that is initiated rapidly in the majority of cells, and a slower, caspase-8-mediated pathway that depends on the lysosomal activities of cathepsins and is used when the caspase-9 pathway is disabled.  相似文献   

11.
MLN4924 is a potent and selective small-molecule inhibitor of NEDD8-activating enzyme, which showed antitumor effect in several types of malignant tumor types. However, the mechanism of action of MLN4924 in acute myeloid leukemia (AML) requires further investigation. Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was conducted to detect the mRNA levels of genes. Gene expression was knocked down by short hairpin RNA (shRNA). Moreover, the protein expression was detected by Western blotting (WB) assay. The proliferation and apoptosis of AML cells were measured by Cell Counting Kit-8 (CCK8) assay and flow cytometry (FCM). In the present study, we observed that the mRNA expression levels of NEDD8, UBA3, UBE2M and RBX1 in AML patients were up-regulated compared with healthy controls, which were correlated with worse overall survival (OS) of patients. Besides, knockdown of UBA3, UBE2M and RBX1 inhibited the NEDDylation of CULs and increased the protein expression of p53 and p21 in MOLM-13 cell line. In AML cells, MLN4924 inhibited cell proliferation, promoted cell apoptosis, and induced cell cycle arrest at the G2/M phase. As revealed by experiments in vivo and in vitro, the NEDDylation of CULs was significantly inhibited and the p53 signaling pathway was activated after MLN4924 treatment. So, we concluded that NEDD8, UBA3, UBE2M and RBX1 may serve as the prognostic biomarkers and novel therapeutic targets for AML. Inhibition of the NEDDylation pathway resulted in an anti-leukemia effect by activating the p53 signaling pathway.  相似文献   

12.
Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells   总被引:13,自引:0,他引:13  
Shieh DE  Chen YY  Yen MH  Chiang LC  Lin CC 《Life sciences》2004,74(18):2279-2290
Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible cells. However, the signaling pathway of their apoptotic effects remains undefined. In this study, the cytotoxic effect of emodin on various human hepatoma cell lines was investigated. Results demonstrated that emodin exhibited strongly suppressing effect on HepG2/C3A, PLC/PRF/5, and SK-HEP-1 cells, with the IC(50) value of 42.5, 46.6, and 53.1 microM, respectively. Furthermore, emodin induced apoptosis in HepG2/C3A cells was clearly verified by the appearance of DNA fragmentation and sub-G(1) accumulation. Besides, HepG2/C3A cells were found to be arrested in G(2)/M phase after the cells were treated with 60 microM emodin for 48 h. Moreover, significant increase in the levels of apoptosis-related signals such as p53 (419.3 pg/ml), p21 (437.4 units/ml), Fas (6.6 units/ml), and caspase-3 (35.4 pmol/min) were observed in emodin treated HepG2/C3A cells. Taken together, emodin displays effective inhibitory effects on the growth of various human hepatoma cell lines and stimulates the expression of p53 and p21 that resulted in the cell cycle arrest of HepG2/C3A cells at G(2)/M phase. Results also suggest that emodin-induced apoptosis in HepG2/C3A cells were mediated through the activation of p53, p21, Fas/APO-1, and caspase-3. It implies that emodin could be a useful chemotherapeutical agent for treatment of hepatocellular carcinoma (HCC).  相似文献   

13.
Immortalized cells frequently have disruptions of p53 activity and lack p53-dependent nucleotide excision repair (NER). We hypothesized that telomerase immortalization would not alter p53-mediated ultraviolet light (UV)-induced DNA damage responses. DNA repair proficient primary diploid human fibroblasts (GM00024) were immortalized by transduction with a telomerase expressing retrovirus. Empty retrovirus transduced cells senesced after a few doublings. Telomerase transduced GM00024 cells (tGM24) were cultured continuously for 6 months (>60 doublings). Colony forming ability after UV irradiation was dose-dependent between 0 and 20J/m2 UVC (LD50=5.6J/m2). p53 accumulation was UV dose- and time-dependent as was induction of p48(XPE/DDB2), p21(CIP1/WAF1), and phosphorylation on p53-S15. UV dose-dependent apoptosis was measured by nuclear condensation. UV exposure induced UV-damaged DNA binding as monitored by electrophoretic mobility shift assays using UV irradiated radiolabeled DNA probe was inhibited by p53-specific siRNA transfection. p53-Specific siRNA transfection also prevented UV induction of p48 and improved UV survival measured by colony forming ability. Strand-specific NER of cyclobutane pyrimidine dimers (CPD) within DHFR was identical in tGM24 and GM00024 cells. CPD removal from the transcribed strand was nearly complete in 6h and from the non-transcribed strand was 73% complete in 24h. UV-induced HPRT mutagenesis in tGM24 was indistinguishable from primary human fibroblasts. These wide-ranging findings indicate that the UV-induced DNA damage response remains intact in telomerase-immortalized cells. Furthermore, telomerase immortalization provides permanent cell lines for testing the immediate impact on NER and mutagenesis of selective genetic manipulation without propagation to establish mutant lines.  相似文献   

14.
15.
16.
Genistein (GEN) has been previously shown to have a proapoptotic effect on cancer cells through a p53-dependent pathway, the mechanism of which remains unclear. One of its intracellular targets, APE1, protects against apoptosis under genotoxic stress and interacts with p53. In this current study, we explored the mechanism of the proapoptotic effect of GEN by examining the APE1–p53 protein–protein interaction. We initially showed that the p53 protein level was elevated in GEN-treated human non-small lung cancer A549 cells and cervical cancer HeLa cells. By examining both protein synthesis and degradation, we found that GEN enhances p53 intracellular stability by interfering with the interaction of APE1 and p53, which provided a plausible explanation for how GEN initiates apoptosis. Furthermore, we found that the interaction between APE1 and p53 is important for the degradation of p53 and is dependent on the redox domain of APE1 by utilizing the redox domain mutant APE1 C65A. Our data suggest that the degradation of wild-type p53 is blocked when the redox domain of APE1 is masked or interrupted. Based on this evidence, we hereby report a novel mechanism of p53 degradation through an APE1-mediated, redox-dependent pathway.  相似文献   

17.
The human 8-oxoguanine-DNA glycosylase 1 (OGG1) is the major DNA glycosylase responsible for repair of 7,8-dihydro-8-oxoguanine (8-oxoG) and ring-opened fapyguanine, critical mutagenic DNA lesions that are induced by reactive oxygen species. Here we show that OGG1 is acetylated by p300 in vivo predominantly at Lys338/Lys341. About 20% of OGG1 is present in acetylated form in HeLa cells. Acetylation significantly increases OGG1's activity in vitro in the presence of AP-endonuclease by reducing its affinity for the abasic (AP) site product. The enhanced rate of repair of 8-oxoG in the genome by wild-type OGG1 but not the K338R/K341R mutant, ectopically expressed in oxidatively stressed OGG1-null mouse embryonic fibroblasts, suggests that acetylation increases OGG1 activity in vivo. At the same time, acetylation of OGG1 was increased by about 2.5-fold after oxidative stress with no change at the polypeptide level. OGG1 interacts with class I histone deacetylases, which may be responsible for its deacetylation. Based on these results, we propose a novel regulatory function of OGG1 acetylation in repair of its substrates in oxidatively stressed cells.  相似文献   

18.
Our previous study showed that KG-1, a human acute leukemia cell line, has mutational loss of 8-oxoguanine (8-hydroxyguanine; oh(8)Gua) glycosylase 1 (OGG1) activity and that its viability is severely affected by 8-hydroxydeoxyguanosine (8-oxodeoxyguanosine; oh(8)dG). In the present study, the nature of the killing action of oh(8)dG on KG-1 was investigated. Signs observed in oh(8)dG-treated KG-1 cells indicated that death was due to apoptosis, as demonstrated by: increased sub-G(1) hypodiploid (apoptotic) cells, DNA fragmentation, and apoptotic body formation; loss of mitochondrial transmembrane potential, the release of cytochrome c from mitochondria into the cytosol, and the down-regulation of bcl-2; and the activation of caspases 8, 9, and 3, and the efficient inhibition of the apoptotic process by caspases inhibitors. This apoptosis appears not to be associated with Fas/Fas ligand because the expressions of these proteins were unchanged. Apoptotic KG-1 cells showed a high concentration of oh(8)Gua in DNA. Moreover, the increased concentration of oh(8)Gua in DNA, and the apoptotic process were not suppressed by the antioxidant, N-acetylcysteine, and thus the process is independent of reactive oxygen species. Of the 18 cancer cell lines treated with oh(8)dG, 3 cell lines (H9, CEM-CM3, and Molt-4) were found to be committed to apoptosis, and all of these showed very low OGG1 activity and a marked increase in the concentration of oh(8)Gua in DNA. These observations indicate that in addition to its mutagenic action, oh(8)Gua in DNA disturbs cell viability by inducing apoptosis.  相似文献   

19.
Pre-eclampsia (PE), whose pathophysiology and etiology remain undefined, represents a leading consequence of fetal and maternal mortality and morbidity. Oxidative stress (OS) is recognized to involve in this disorder. In this study, we hypothesized that neural cell adhesion molecule 1 (NCAM1) gene silencing would suppress the OS in the pregnancy complicated by PE. Initially, clinical samples were collected for determination of NCAM1 expression in placental tissues and levels of OS products in blood. To assess the regulatory mechanism of NCAM1 knockdown on OS, we used small interfering RNA (siRNA) to silence NCAM1 expression in human umbilical vein endothelial cells (HUVECs). Next, cells were treated with or without hypoxia/reoxygenation to observe the level changes of OS products and p38 mitogen-activated protein kinase (p38MAPK) pathway-related genes. Finally, an evaluation of HUVEC migration and invasion abilities was conducted by wound-healing and transwell assays. Placenta of pregnancy with PE presented significantly increased NCAM1 expression in comparison to placenta of normal pregnancy. Meanwhile, enhanced OS in blood of pregnant women with PE was observed relative to women with normal pregnancy. siRNA-mediated knockdown of NCAM1 gene could inhibit the p38MAPK signaling pathway, repress OS, and promote cell migration and invasion in HUVECs, indicating that NCAM1 inhibition could reduce the influence of PE. Importantly, blocking the p38MAPK signaling pathway reversed the inhibitory role of NCAM1 gene silencing on PE. Collectively, this study defines potential role of NCAM1 gene silencing as a therapeutic target in PE through inhibiting OS and enhancing HUVEC migration and invasion by disrupting the p38MAPK signaling pathway.  相似文献   

20.
We have used a stepwise increase in ligand complexity approach to estimate the relative contributions of the nucleotide units of DNA containing 7,8-dihydro-8-oxoguanine (oxoG) to its total affinity for human 8-oxoguanine DNA glycosylase (OGG1) and construct thermodynamic models of the enzyme interaction with cognate and non-cognate DNA. Non-specific OGG1 interactions with 10–13 nt pairs within its DNA-binding cleft provides approximately 5 orders of magnitude of its affinity for DNA (ΔG° approximately −6.7 kcal/mol). The relative contribution of the oxoG unit of DNA (ΔG° approximately −3.3 kcal/mol) together with other specific interactions (ΔG° approximately −0.7 kcal/mol) provide approximately 3 orders of magnitude of the affinity. Formation of the Michaelis complex of OGG1 with the cognate DNA cannot account for the major part of the enzyme specificity, which lies in the kcat term instead; the rate increases by 6–7 orders of magnitude for cognate DNA as compared with non-cognate one. The kcat values for substrates of different sequences correlate with the DNA twist, while the KM values correlate with ΔG° of the DNA fragments surrounding the lesion (position from −6 to +6). The functions for predicting the KM and kcat values for different sequences containing oxoG were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号