首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The genetic structure of populations over a wide geographical area should reflect the demographic and evolutionary processes that have shaped a species across its range. We examined the population genetic structure of antelope ground squirrels (Ammospermophilus leucurus) across the complex of North American deserts from the Great Basin of Oregon to the cape region of the Baja California peninsula. We sampled 73 individuals from 13 major localities over this 2500-km transect, from 43 to 22 degrees north. Our molecular phylogeographical analysis of 555 bp of the mitochondrial cytochrome b gene and 510 bp of the control region revealed great genetic uniformity in a single clade that extends from Oregon to central Baja California. A second distinct clade occupies the southern half of the peninsula. The minimal geographical structure of the northern clade, its low haplotype diversity and the distribution of pairwise differences between haplotypes suggest a rapid northward expansion of the population that must have followed a northward desert habitat shift associated with the most recent Quaternary climate warming and glacial retreat. The higher haplotype diversity within the southern clade and distribution of pairwise differences between haplotypes suggest that the southern clade has a longer, more stable history associated with a southern peninsular refugium. This system, as observed, reflects both historical and contemporary ecological and evolutionary responses to physical environmental gradients within genetically homogeneous populations.  相似文献   

2.
3.
The marine bryozoan Celleporella hyalina is a species complex composed of many highly divergent and mostly allopatric genetic lineages that are reproductively isolated but share a remarkably similar morphology. One such lineage commonly encrusts macroalgae throughout the NE Atlantic coast. To explore the processes leading to geographical diversification, reproductive isolation and speciation in this taxon, we (i) investigated NE Atlantic C. hyalina mitochondrial DNA phylogeography, and (ii) used breeding trials between geographical isolates to ascertain reproductive isolation. We find that haplotype diversity is geographically variable and there is a strong population structure, with significant isolation by distance. NE Atlantic C. hyalina is structured into two main parapatric lineages that appear to have had independent Pleistocene histories. Range expansions have resulted in two contact zones in Spain and W Ireland. Lineage 1 is found from Ireland to Spain and has low haplotype diversity, with closely related haplotypes, suggesting a recent population expansion into the Irish Sea, S Ireland, S England and Spain. Lineage 2 is found from Iceland to Spain and has high haplotype diversity. Complete reproductive isolation was found between some geographical isolates representing both lineages, whereas it was incomplete or asymmetric between others, suggesting these latter phylogeographical groups probably represent incipient species. The phylogeographical distribution of NE Atlantic C. hyalina does not fall easily into a pattern of southern refugia, and we discuss likely differences between terrestrial and marine system responses to Pleistocene glacial cycles.  相似文献   

4.
Allozymes and mitochondrial DNA sequences were used to examine the phylogeographical history of the rough-skinned newt, Taricha granulosa, in western North America. Nineteen populations were analysed for allozyme variation at 45 loci, and 23 populations were analysed for cytochrome b sequence variation. Both data sets agree that populations in the southern part of the range are characterized by isolation by distance, whereas northern populations fit the expectations of a recent range expansion. However, the northern limit of isolation by distance (and the southern limit of range expansion) is located in Oregon State by the mtDNA data, and in Washington State by the allozyme data. Nevertheless, both data sets are consistent with the known Pleistocene history of western North America, with phylogenetically basal populations in central and northern California, and a recent range expansion in the north following the retreat of the Cordilleran ice sheet 10,000 years ago. Additionally, a population in Idaho, previously considered introduced from central California based on morphometric analyses, possesses a distinct mtDNA haplotype, suggesting it could be native. The relevance of these results for Pacific Northwest biogeography is discussed.  相似文献   

5.
Abstract Aims Ants (Hymenoptera: Formicidae) of the Baja California peninsula are poorly known, with information based largely on scattered museum and literature records. We provide the first comprehensive account of ant species occurring on the peninsula, we examine distribution patterns, and we assess the ‘peninsular effect’ which predicts that species richness declines from the base to the tip of a peninsula. Location Peninsula of Baja California, Mexico. Methods Data collection involved examining, identifying and recording label data from c. 2350 series of ants. These records provide a provisional, if incomplete, species list. We applied the incidence‐based estimator, Chao‐2, to our data base of specimen records to estimate the total number of ant species on the peninsula. We assessed endemism by comparing our peninsular species list to those from adjacent states. The peninsular effect was tested by comparing genus and species level richness between the two states of Baja California, and across five latitudinal blocks. Results We document 170 native ant species in thirty‐three genera, plus six non‐native species, in Baja California. It seems likely that additional species remain to be discovered: the Chao‐2 estimator of species richness, at 206.0 species, is about 20% higher than our observed species richness. About 30% of the species and 20% of the genera are restricted within Baja California to the relatively mesic California Floristic Province of north‐western Baja California. Nearly all of these species also occur in California. Forty‐seven species (27.6%) are peninsula endemics. Using our entire data set, the peninsular effect appears to be strong, with about twice as many species in the northern state of Baja California than are recorded from the southern state of Baja California Sur; the ratio of genera is 33 to 24. However, this effect becomes weak at the species level and absent at the genus level when minimizing habitat effects by omitting species restricted to the California Floristic Province. At a finer scale, across latitudinal blocks of about 1.9°, the number of species declines towards central portions of the peninsula and then increases in the Cape Region. Nine ant species display strongly disjunct distributions, and these occur in two general patterns: peninsula disjuncts and peninsula–mainland disjuncts. Main conclusions The Baja California peninsula supports a diverse and distinctive ant fauna, with the proportion of endemic species similar to that displayed by plants. Patterns of species and genus richness across the five latitudinal blocks provide poor support for the peninsular effect. Moreover, habitat diversity, especially that related to topographic relief, appears to be the most important factor affecting the gradient of ant species richness in Baja California. Additional collections are needed to develop a more complete species list and to determine the boundaries and status of many species. Nevertheless, the present data base provides a useful starting point for understanding the evolution of ant assemblages in Baja California and for comparison with peninsular patterns in other taxa.  相似文献   

6.
Phylogeography allows the inference of evolutionary processes that have shaped the current distribution of genealogical lineages across a landscape. In this perspective, comparative phylogeographical analyses are useful in detecting common historical patterns by either comparing different species within the same area within a continent or by comparing similar species in different areas. Here, we analyse one taxon (the white oak, genus Quercus, subgenus Quercus, section Quercus) that is widespread worldwide, and we evaluate its phylogeographical pattern on two different continents: western North America and Western Europe. The goals of the present study are: (i) to compare the chloroplast genetic diversity found in one California oak species vs. that found in the extensively studied European oak species (in France and the Iberian Peninsula); (ii) to contrast the geographical structure of haplotypes between these two taxa and test for a phylogeographical structure for the California species. For this purpose, we used the same six maternally inherited chloroplast microsatellite markers and a similar sampling strategy. The haplotype diversity within site as well as the differentiation among sites was alike in both taxa, but the Californian species has higher allelic richness with a greater number of haplotypes (39 vs. 11 in the European white oak complex). Furthermore, in California these 39 haplotypes are distributed locally in patches while in the European oaks haplotypes are distributed into lineages partitioned longitudinally. These contrasted patterns could indicate that gene movement in California oak populations have been more stable in response to past climatic and geological events, in contrast to their European counterparts.  相似文献   

7.
The population genetic structure of three species of Amazonian rodents ( Oligoryzomys microtis, Oryzomys capito , and Mesomys hispidus ) is examined for mtDNA sequence haplotypes of the cytochrome b gene by hierarchical analysis of variance and gene flow estimates based on fixation indices ( N ST) and coalescence methods. Species samples are from the same localities along 1000 km of the Rio Juruá in western Amazonian Brazil, but each species differs in important life history traits such as population size and reproductive rate. Average haplotype differentiation, hierarchical haplotype apportionment, and gene flow estimates are contrasted in discussing the current and past population structure. Two species exhibit isolation by distance patterns wherein gene flow is largely limited to geographically adjacent localities. Mesomys exhibits this pattern throughout its range along the river. More than 75% of haplotype variation is apportioned among localities and regions, and estimates of Nm for pair-wise comparisons are nearly always less than 1. Oligoryzomys shows weak isolation by distance, but only over the largest geographical distances. Nm values for this species are nearly always above 1 and most (about 80%) of haplotype variation is contained within local populations. In contrast, Oryzomys exhibits no genetic structure throughout its entire distribution; Nm values average 17 and nearly 90% of the total haplotype variance is contained within local populations. Although gene flow estimates are high, the pattern of Nm as a function of geographical distance suggests that this species experienced a more recent invasion of the region and is still in genetic disequilibrium under its current demographic conditions.  相似文献   

8.
David A. Wiggins 《Ecography》1999,22(5):542-547
The peninsula effect, a decrease in species diversity from the base to the tip of peninsulas, has been proposed to explain the relatively poor species diversity of mammals on North American peninsulas. Subsequent work has questioned both the existence of peninsular declines in diversity, as well as the proposed cause (immigration-extinction dynamics). Previous studies of the Baja California avifauna have shown a gradual decrease in the diversity of breeding birds from the base to the tip of the peninsula. Using newly published data on the breeding land birds, I found a decrease only from the base to the middle of the peninsula, with a slight increase in diversity from the middle to the tip. This result is similar to that for other highly vagile taxa (e.g., Chiroptera. Lepidoptera) and is largely due to the coneave diversity gradient of montane species along the peninsula. Habitat associations of the Baja avifauna and the location of potential source populations suggest that: 1) local habitat heterogeneity is likely the single most important factor influencing the avian diversity gradient along the peninsula; and 2) limited immigration of Neotropical species from mainland areas, and of Nearctic species from the base of the peninsula to the montane southern tip is partly responsible for the form of the diversity gradient along the southern half of the peninsula. My results along with those from previous studies, suggest that rather than colonization/extinction dynamics, habitat heterogeneity and the vagility of the taxa considered have the greatest impact on the observed patterns of species diversity along peninsulas,  相似文献   

9.
Massie KR  Markow TA 《Hereditas》2005,142(2005):51-55
Populations of the North American cactophilic fruitfly Drosophila mojavensis and its sibling species D. arizonae exist both in sympatry and in allopatry. Females of D. arizonae, regardless of their population of origin, are effectively completely isolated behaviorally from D. mojavensis males. On the other hand, females of D. mojavensis from the sympatric populations in Sonora, Mexico exhibit significantly stronger premating isolation from D. arizonae males than do D. mojavensis females from allopatric populations from the Baja California peninsula. Earlier studies interpreted these limited observations as support for reinforcement. Since the time of those studies, additional allopatric populations of D. mojavensis have been collected from southern California and from Santa Catalina Island, off the coast of southern California. Here, we tested the prediction that if sympatry is in fact associated with increased isolation in D. mojavensis, these additional allopatric populations also should show, relative to the sympatric ones, less isolation from D. arizonae. Our results are consistent with this prediction and suggest that isolation is in fact stronger in sympatry.  相似文献   

10.
Chloroplast DNA variation in the Arctic plant species Dryas integrifolia (Rosaceae) was analysed in relation to both the present-day geographical distribution of populations and to Pleistocene fossil records of this species. The phylogeographical structure was weak but the analysis of haplotype diversity revealed several groups of haplotypes having present-day geographical ranges that overlap locations postulated from geographical and fossil evidence to have been glacial refugia. Based on this information we infer that two important refugial sources of Arctic recolonization by this species were Beringia and the High Arctic. Two other putative refugia, located southeast of the ice sheet and along coastal regions of the eastern Arctic may have served as sources for recolonization of smaller portions of the Arctic. The genetic substructure in the species is mostly due to variation among populations regardless of the ecogeographical region in which they are found. Spatial autocorrelation at the regional scale was also detected. High levels of diversity both within populations and ecogeographical regions are probably indicative of population establishment from several sources possibly combined with recent gene flow.  相似文献   

11.
The Baja California populations of Pseudacris regilla, a widespread species in Western North America ranging from British Columbia to southern Baja California, are characterized by extensive geographic fragmentation. We performed phylogeographic and historical demographic analyses on 609 bp of the cytochrome b mitochondrial gene of 110 individuals representing 28 populations to determine the relative influences of current and historical processes in shaping the present distribution of genetic diversity on the Baja California Peninsula. Haplotypes from this area were nested in a clade with three well-differentiated groups. Two of these groups are from Baja California Sur and another is from California and Baja California. The estimated date for the split of these groups, between 0.9-1 Ma, fits with previously proposed hypotheses of vicariance due to different transpeninsular seaways, although successive population fragmentation and expansion due to climatic oscillations during Pleistocene glaciations cannot be discarded. Historical demographic analyses detected signs of past population expansions, especially in the southernmost group. With respect to populations north of this region, two older clades were identified, one with haplotypes mainly distributed in central California, and the other corresponding to the northern half of the species range, in what apparently is a recurrent pattern in the Pacific coast of North America. Based on the concordance between mt-DNA and available allozyme data indicating that these species have a long independent evolutionary history, we propose to consider the three major clades as distinct species: P. regilla, P. pacifica, and P. hypochondriaca.  相似文献   

12.
The eastern sedge frog Litoria fallax (Anura: Hylidae) is common throughout the open forests and coastal wetlands along the eastern coast of Australia. Its range spans four biogeographical zones from northern Queensland to central New South Wales. Phylogenetic analysis of mitochondrial DNA (mtDNA) haplotypes of 87 L. fallax individuals from 22 populations identified two major mtDNA lineages, differing by 11-12% sequence divergence. The two clades of haplotypes were separated by the McPherson Range, indicating that this mesic upland area has acted as a major long-term barrier to gene flow for this open forest species. Slight isolation by distance was observed within both the northern and southern lineages but was insufficient to explain the large sequence divergence between lineages. Within the northern lineage, additional phylogeographical structure was observed across the relatively dry Burdekin Gap which separates Atherton populations from all populations in the central and eastern Queensland biogeographical zones. There was less phylogeographical structure in the southern lineage suggesting historical gene flow across the drier portions of the Great Dividing Range. These data, together with recent observations of deep phylogeographical divergences in rainforest-restricted Litoria suggest that the east coast hylids of Australia represent an old (Tertiary) radiation. Individual species of Litoria have been strongly affected by climatic and ecological barriers to gene flow during the Quaternary.  相似文献   

13.
The Gulf of California endemic reef fish, Acanthemblemaria crockeri (Blennioidei, Chaenopsidae), reportedly has two colour morphs, one with melanic lateral spots ('Gulf' morph) and one with orange spots ('Cape' morph). In this study, we recorded colour morph in both males and females and collected mitochondrial DNA sequence data for cytochrome c oxidase I (COI) and tRNA-Pro/D-loop of specimens from throughout the Gulf to explore the genetic basis of the colour morphs. Two highly divergent (HKY + I distance = 11.9% for COI), reciprocally monophyletic lineages were identified, consistent with the presence of two parapatric species. A 30-km gap between the distributions of mitochondrial lineages roughly corresponds to a hypothesized former seaway across the Baja California peninsula north of La Paz, although the estimated divergence time (1.84 million years ago) is more recent than the hypothetical seaway (3–4 million years ago). Surprisingly, the distribution of mitochondrial species is not congruent with the distribution of either male or female colour morphs. Our analysis also revealed significant population differentiation within both species and no shared haplotypes among populations. The northern Gulf species includes four populations (NB, CB, NM and CM) corresponding to northern and central Baja and northern and central mainland sites, while the Cape species includes two populations (SB and SM) corresponding to the Baja and mainland sides of the southern Gulf. The NB/CB division corresponds to a hypothesized Plio–Pleistocene mid-peninsular seaway. The level of genetic divergence documented in this lineage is extraordinary for a marine fish with a pelagic larval stage within a semi-enclosed basin.  相似文献   

14.
We examined cytochrome b sequence variation in 251 ornate shrews (Sorex ornatus) from 20 localities distributed throughout their geographical range. Additionally, vagrant (S. vagrans) and montane (S. monticolus) shrews from four localities were used as outgroups. We found 24 haplotypes in ornate shrews from California (USA) and Baja California (Mexico) that differed by 1-31 substitutions in 392 bp of mitochondrial DNA (mtDNA) sequence. In a subset of individuals, we sequenced 699 bp of cytochrome b to better resolve the phylogeographic relationships of populations. The ornate shrew is phylogeographically structured into three haplotype clades representing southern, central and northern localities. Analysis of allozyme variation reveals a similar pattern of variation. Several other small California vertebrates have a similar tripartite pattern of genetic subdivision. We suggest that topographic barriers and expansion and contraction of wetland habitats in the central valley during Pleistocene glacial cycles account for these patterns of genetic variation. Remarkably, the northern ornate shrew clade is phylogenetically clustered with another species of shrew suggesting that it may be a unique lowland form of the vagrant shrew that evolved in parallel to their southern California counterparts.  相似文献   

15.
Nucleotide sequences from the mitochondrial cytochrome c oxidase subunit I (COI) gene, comprising the standard barcode segment, were used to examine genetic differentiation, systematics, and population structure of cactus flies (Diptera: Neriidae: Odontoloxozus) from Mexico and south‐western USA. Phylogenetic analyses revealed that samples of Odontoloxozus partitioned into two distinct clusters: one comprising the widely distributed Odontoloxozus longicornis (Coquillett) and the other comprising Odontoloxozus pachycericola Mangan & Baldwin, a recently described species from the Cape Region of the Baja California peninsula, which we show is distributed northward to southern California, USA. A mean Kimura two‐parameter genetic distance of 2.8% between O. longicornis and O. pachycericola, and eight diagnostic nucleotide substitutions in the COI gene segment, are consistent with a species‐level separation, thus providing the first independent molecular support for recognizing O. pachycericola as a distinct species. We also show that the only external morphological character considered to separate adults of the two species (number of anepisternal bristles) varies with body size and is therefore uninformative for making species assignments. Analysis of molecular variance indicated significant structure among populations of O. longicornis from three main geographical areas, (1) Arizona, USA and Sonora, Mexico; (2) Santa Catalina Island, California, USA; and (3) central Mexico (Querétaro and Guanajuato), although widely‐separated populations from Arizona and Sonora showed no evidence of structure. A TCS haplotype network showed no shared haplotypes of O. longicornis among the three main regions. The potential roles of vicariance and isolation‐by‐distance in restricting gene flow and promoting genetic differentiation and speciation in Odontoloxozus are discussed. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 245–256.  相似文献   

16.
The broad distribution of the Sceloporus magister species group (squamata: phrynosomatidae) throughout western North America provides an appropriate model for testing biogeographical hypotheses explaining the timing and origins of diversity across mainland deserts and the Baja California Peninsula. We inferred concordant phylogenetic trees describing the higher-level relationships within the magister group using 1.6 kb of mitochondrial DNA (mtDNA) and 1.7 kb of nuclear DNA data. These data provide strong support for the parallel divergence of lineages endemic to the Baja California Peninsula (S. zosteromus and the orcutti complex) in the form of two sequential divergence events at the base of the magister group phylogeny. A relaxed phylogenetic analysis of the mtDNA data using one fossil and one biogeographical constraint provides a chronology of these divergence events and evidence that further diversification within the Baja California clades occurred simultaneously, although patterns of geographical variation and speciation between clades differ. We resolved four major phylogeographical clades within S. magister that (i) provide a novel phylogenetic placement of the Chihuahuan Desert populations sister to the Mojave Desert; (ii) illustrate a mixed history for the Colorado Plateau that includes Mojave and Sonoran Desert components; and (iii) identify an area of overlap between the Mojave and Sonoran Desert clades near Yuma, Arizona. Estimates of bidirectional migration rates among populations of S. magister using four nuclear loci support strong asymmetries in gene flow among the major mtDNA clades. Based on the nonexclusivity of mtDNA haplotypes, nuclear gene flow among populations and wide zones of phenotypic intergradation, S. magister appears to represent a single geographically variable and widespread species.  相似文献   

17.
Cutleria cylindrica Okamura was described from Japan in 1902 and has been reported only from northwestern Asia until its relatively recent discovery in California, USA, and Baja California, Mexico. To clarify the genetic relationships within and among the disjunct populations, we carried out a molecular phylogenetic study, as well as the examination of sex ratio and the life‐history patterns, of populations in Japan, Korea, and California. Based on the DNA sequences of mitochondrial genes cox2, cox3, the open reading frame (ORF) region, and the spacer between cox3 and ORF, a total of 23 haplotypes were detected in the 85 individuals from 20 localities in Japan, Korea, and California. All localities in Japan and Korea included multiple haplotypes, but only a single haplotype was found in California. There was a positive relationship between distance and genetic divergence in Japan and Korea. The single haplotype found in California was the same as one occurring in Japan (Aomori Pref. and Fukuoka Pref.) and Korea (Daedaepo, Pusan). Both male and female gametophytes were distributed in most northeastern Asian populations. Only female gametophytes, developing parthenogenetically from female gametes, were found in California and Aomori Pref., Japan. On the basis of these results, we conclude that the disjunct population of C. cylindrica in California originated from a relatively recent introduction from Japan and shares its origin with the parthenogenetic population in the Tsugaru Strait.  相似文献   

18.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

19.
Divergence and speciation may occur by various means, depending on the particular history, selective environments, and genetic composition of populations. In Drosophila mojavensis, a good model of incipient speciation, understanding the population genetic structure within this group facilitates our ability to understand the context in which reproductive isolation among populations is developing. Here we report the genetic structure and relationships of D. mojavensis populations at nuclear loci. We surveyed 29 populations throughout the distribution of D. mojavensis for four microsatellite loci to differentiation among populations of this species. These loci reveal four distinct geographical regions of D. mojavensis populations in the south-western United States and north-western Mexico--(i) Baja California peninsula (Baja), (ii) Sonora, Mexico-southern Arizona, United States (Sonora), (iii) Mojave Desert and Grand Canyon (Mojave), and (iv) Santa Catalina Island (Catalina). While all regions show strong isolation, Mojave and Catalina are highly diverged from other regions. Within any region, populations are largely homogenous over broad geographical distances. Based on the population structure, we find clear geographical barriers to gene flow appear to have a strong effect in isolating populations across regions for this species.  相似文献   

20.
Peromyscus sejugis, a peripheral isolate of Peromyscus maniculatus, is a threatened taxon endemic to 2 small islands in the Sea of Cortés. Although its insularity makes the specific recognition of P. sejugis inherently problematic, resolution of this problem has important conservation implications. To evaluate the specific validity and evolutionary history of P. sejugis, we compared sequence variation (ND3/ND4L/ND4) in mtDNA for both island populations of P. sejugis with that for 8 populations of P. maniculatus from mainland Baja California. Each island population of P. sejugis had a single haplotype (0.7% sequence divergence), whereas 11 different haplotypes (mean sequence divergence = 0.68%) were obtained for the populations of P. maniculatus. The mean sequence divergence between the populations of the 2 species was 2.0%. Nested clade analysis supports the conclusion that P. sejugis is an insular isolate of P. maniculatus from mainland Baja California. Although our analysis confirms a low level of mtDNA divergence between P. sejugis and P. maniculatus from Baja California, the genealogical concordance of morphological, chromosomal, microsatellite, and mtDNA haplotype distinctiveness supports the conclusion that the 2 island populations of P. sejugis constitute independent evolutionarily significant units and together represent a phylogenetic species distinct from the P. maniculatus from Baja California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号