首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taisova AS  Keppen OI  Fetisova ZG 《Biofizika》2004,49(6):1069-1074
The properties of the light-harvesting superantenna of the photosynthesizing bacteria from the new family of green filamentous bacteria Oscillochloridaceae were investigated by optical spectroscopy. The antenna of Oscillochloris trichoides consists of peripheral chlorosomal and membrane subantennas. A method of isolation of Osc. trichoides chlorosomal antenna was developed using the chaothropic agent sodium thiocyanate, which simultaneously acts to stabilize chlorosomal activity. An analysis of the second derivatives of the absorption spectra of isolated chlorosomes and their acetone-methanol extracts suggested that BChl c was a predominant light-harvesting pigment in Osc. trichoides chlorosomes. Besides, it was found that, in addition to the BChl c-antenna, chlorosomes contain a minor BChl a-antenna. It was shown that the membrane BChl a-subantenna is a light-harvesting complex with absorption maxima in the near infrared region at 805 and 860 nm. Analysis of the spectral data obtained suggested that the Osc. trichoides chlorosomal antenna resembles those from Chlorobiaceae species, whereas the membrane B805-860 BChl a antenna of Osc. trichoides is close to the membrane B808-866 BChl a antenna of Chloroflexaceae species.  相似文献   

2.
Whole cells, chlorosome-membrane complexes and isolated chlorosomes of the green mesophilic filamentous bacterium Oscillochloris trichoides, representing a new family of the green bacteria Oscillochloridaceae, were studied by optical spectroscopy and electron microscopy. It was shown that the main light-harvesting pigment in the chlorosome is BChl c. The presence of BChl a in chlorosomes was visualized only by pigment extraction and fluorescence spectroscopy at 77 K. The molar ratio BChl c: BChl a in chlorosomes was found to vary from 70:1 to 110:1 depending on light intensity used for cell growth. Micrographs of negatively and positively stained chlorosomes as well as of ultrathin sections of the cells were obtained and used for morphometric measurements of chlorosomes. Our results indicated that Osc. trichoides chlorosomes resemble, in part, those from Chlorobiaceae species, namely, in some spectral features of their absorption, fluorescence, CD spectra, pigment content as well as the morphometric characteristics. Additionally, it was shown that similar to Chlorobiaceae species, the light-harvesting chlorosome antenna of Osc. trichoides exhibited a highly redox-dependent BChl c fluorescence. At the same time, the membrane B805–860 BChl a antenna of Osc. trichoides is close to the membrane B808–866 BChl a antenna of Chloroflexaceae species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
We determined the concentrations of bacteriochlorophylls (BChl) in the light-harvesting antennae of Oscillochloris trichoides (of the family Oscillochloridaceae belonging to green filamentous mesophilic bacteria) cultivated either with gabaculine, an inhibitor of the C-5 pathway of BChl biosynthesis in a number of bacteria, or at various illumination intensities. We determined the BChl c: BChl a molar ratios in intact cells, in chlorosome-membrane complexes, and in isolated chlorosomes. We revealed that BChl c synthesis in Osc. trichoides was more gabaculine-sensitive than BChl a synthesis. Accordingly, an increase in gabaculine concentrations in the medium resulted in a decrease in the BChl c: BChl a ratio in the tested samples. We suggest that BChl synthesis in Osc. trichoides proceeds via the C-5 pathway, similar to representatives of other families of green bacteria (Chlorobium limicola and Chloroflexus aurantiacus). We demonstrated that the BChl c: BChl a ratio in the chlorosomes varied from 55 : 1 to 110 : 1, depending on light intensity. This ratio is, therefore, closer to that of Chlorobiaceae, and it significantly exceeds the BChl c: BChl a ratio in Chloroflexaceae.  相似文献   

4.
We determined the concentrations of bacteriochlorophylls (BChl) in the light-harvesting antennae of Oscillochloris trichoides (of the family Oscillochloridaceae belonging to green filamentous mesophilic bacteria) cultivated either with gabaculine, an inhibitor of the C-5 pathway of BChl biosynthesis in a number of bacteria, or at various illumination intensities. We determined the BChl c: BChl a molar ratios in intact cells, in chlorosome-membrane complexes, and in isolated chlorosomes. We revealed that BChl c synthesis in Osc. trichoides was more gabaculine-sensitive than BChl a synthesis. Accordingly, an increase in gabaculine concentrations in the medium resulted in a decrease in the BChl c: BChl a ratio in the tested samples. We suggest that BChl synthesis in Osc. trichoides proceeds via the C-5 pathway, similar to representatives of other families of green bacteria (Chlorobium limicola and Chloroflexus aurantiacus). We demonstrated that the BChl c: BChl a ratio in the chlorosomes varied from 55: 1 to 110: 1, depending on light intensity. This ratio is, therefore, closer to that of Chlorobiaceae, and it significantly exceeds the BChl c: BChl a ratio in Chloroflexaceae.  相似文献   

5.
Independent experimental and theoretical evaluation was performed for the adequacy of our previously proposed general molecular model of structural organization of light-harvesting pigments in chlorosomal bacteriochlorophyll (BChl) c/d/e-containing superantenna of different green bacteria. Simultaneous measurement of hole burning in the optical spectra of chlorosomal BChl c and temperature dependence of steady-state fluorescence spectra of BChl c was accomplished in intact cells of photosynthetic green bacterium Chloroflexus aurantiacus; this allows unambiguous determination of the structure of exciton levels of BChl c oligomers in this natural antenna, which is a fundamental criterion for adequacy of any molecular model for in vivo aggregation of antenna pigments. Experimental data were shown to confirm our model of organization of oligometric pigments in chlorosomal BChl c antenna of green bacterium Chloroflexus aurantiacus. This model, which is based on experimental data and our theory of spectroscopy of oligomeric pigments, implies that the unit building block of BChl c antenna is a cylindrical assembly containing six excitonically coupled linear pigment chains whose exciton structure with intense upper levels provides for the optimal spectral properties of the light-harvesting antenna.  相似文献   

6.
Femtosecond absorption difference spectra were measured for chlorosomes isolated from the green bacterium Chloroflexus aurantiacus at room temperature. Using the relative difference absorption of the oligomeric BChl c and monomeric BChl a bands, the size of a unit BChl c aggregate as well as the exciton coherence size were estimated for the chlorosomal BChl c antenna under study. A quantitative fit of the data was obtained within the framework of the exciton model proposed before [Fetisova et al. (1996) Biophys J 71: 995–1010]. The size of the antenna unit was found to be 24 exciton-coupled BChl c molecules. The anomalously high bleaching value of the oligomeric B740 band with respect to the monomeric B795 band provided the direct evidence for a high degree of exciton delocalization in the chlorosomal B740 BChl c antenna. The effective delocalization size of individual exciton wavefunctions (the thermally averaged inverse participation ratio) in the chlorosomal BChl c antenna is 9.5, whereas the steady-state wavepacket corresponds to the coherence size (the inverse participation ratio of the density matrix) of 7.4 at room temperature.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

7.
Fluorescence spectra of single chlorosomes isolated from a green filamentous bacterium (Chloroflexus (Cfl.) aurantiacus) and a green sulfur bacterium (Chlorobium (Cb.) tepidum) were measured by using a confocal laser microscope at 13 K. Chlorosomes were frozen either in a liquid solution (floating chlorosome) or on a quartz plate after being adsorbed (adsorbed chlorosome). Fluorescence peak wavelengths were shorter for the adsorbed single chlorosomes than for the floating ones. Single floating Cfl. chlorosomes showed a distribution of fluorescence peak positions having a center at 759.0 nm with a full width at half maximum of 6.3 nm. Single floating Cb. chlorosomes showed a 782.7 nm center with a full width at half-maximum of 3.4 nm. The distribution shifted to the blue and became wider with increasing temperature, especially in Cb. chlorosomes, suggesting a large excitonic density of states just above the lowest level. Energy transfer from BChl-c aggregates to BChl-a molecules in the baseplate proteins was observed in the floating chlorosomes but not in the adsorbed ones. A positive correlation was found between the peak wavelength of BChl-c fluorescence and the intensity of BChl-a fluorescence in single Cfl. chlorosomes. The results suggest that the BChl-c aggregates with longer wavelengths of the fluorescence peaks have a more efficient F?rster-type energy transfer to the baseplate BChl-a.  相似文献   

8.
Phylogeny of anoxygenic filamentous phototrophic bacteria (AFPB) of the family Oscillochloridaceae (Oscillochloris trichoides DG6T and the recently isolated strains Oscillochloris sp. R and C6) was studied based on comparative analyses of the genes coding for 16S rRNA (rrs), ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbL), and nitrogenase (nifH). The sequences of the genes studied proved to be identical in the three strains, which is in agreement with data obtained earlier that showed a lack of differentiating phenotypic distinctions between these strains; therefore, it is proposed that the new strains should be identified as representatives of the species O. trichoides. Using an earlier designed system of oligonucleotide primers and a specially designed additional primer, fragments of the cbbL genes of the “red-like” form I RuBisCO were amplified and sequenced for all of the O. trichoides strains. Analysis of the cbbL genes suggested a separate position of the bacteria studied in the phylogenetic tree, where O. trichoides strains formed an independent branch, which, apart from this species, also included the only studied species of gram-positive facultatively chemoautotrophic bacteria, Sulfobacillus acidophilus. In the phylogenetic tree inferred from the analysis of nifH genes, the bacteria under study also formed a new separate branch, deviating near the root, which indicated a lack of relatedness between them and other phototrophic bacteria. The data obtained support the conclusion that AFPB has an ancient origin and their allocation as one of the main evolutionary lineages of eubacteria, which was made based on the analysis of ribosomal genes.  相似文献   

9.
Phylogeny of anoxygenic filamentous phototrophic bacteria (AFPB) of the family Oscillochloridaceae (Oscillochloris trichoides DG6T and the recently isolated strains Oscillochloris sp. R and C6) was studied based on comparative analyses of the genes coding for 16S rRNA (rrs), ribulose- 1,5-bisphosphate carboxylase/oxygenase (cbbL), and nitrogenase (nifH). The sequences of the genes studied proved to be identical in the three strains, which is in agreement with data obtained earlier that showed lack of differentiating phenotypic distinctions between these strains; therefore, it is proposed that the new strains should be identified as representatives of the species O. trichoides. Using an earlier designed system of oligonucleotide primers and a specially designed additional primer, fragments of the cbbL genes of the "red-like" form I RuBPC were amplified and sequenced for all of the O. trichoides strains. Analysis of the cbbL genes suggested a separate position of the bacteria studied in the phylogenetic tree, where O. trichoides strains formed an independent branch, which, apart from this species, also included the only studied species of gram-positive facultatively chemoautotrophic bacteria, Sulfobacillus acidophilus. In the phylogenetic tree inferred from the analysis of nifH genes, the bacteria under study also formed a new separate branch, deviating near the root, which indicated lack of relatedness between them and other phototrophic bacteria. The data obtained support the conclusion that AFPB has an ancient origin and their identification as one of the main evolutionary lineages of eubacteria, which was made based on the analysis of ribosomal genes.  相似文献   

10.
The energy transfer processes in isolated chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus have been studied at low temperatures (1.27 K) by two-pulse photon echo and one-color transient absorption techniques with approximately 100 fs resolution. The decay of the coherence in both types of chlorosomes is characterized by four different dephasing times stretching from approximately 100 fs up to 300 ps. The fastest component reflects dephasing that is due to interaction of bacteriochlorophylls with the phonon bath, whereas the other components correspond to dephasing due to different energy transfer processes such as distribution of excitation along the rod-like aggregates, energy exchange between different rods in the chlorosome, and energy transfer to the base plate. As a basis for the interpretation of the excitation dephasing and energy transfer pathways, a superlattice-like structural model is proposed based on recent experimental data and computer modeling of the Bchl c aggregates (1994. Photosynth. Res. 41:225-233.) This model predicts a fine structure of the Q(y) absorption band that is fully supported by the present photon echo data.  相似文献   

11.
Spectral hole burning studies of intact cells of the green bacteriumChlorobium phaeovibrioides have proven that the Qy-absorption system of antenna bacteriochlorophylle (BChle) should be interpreted in terms of the delocalized exciton level structure of an aggregate. For the first time the 0-0 band of the lowest exciton state of BChle aggregates has been directly detected as the lowest energy inhomogeneously broadened band (FWHM 100 cm–1; position of maximum, at 739 nm) of the near-infrared BChle band in the 1.8 K excitation spectrum (FWHM=750 cm–1; position of maximum, at 715 nm). The comparative analysis of the hole spectra, measured for the three species of BChlc- ande-containing green bacteria, has shown that the 0-0 transition bands of the lowest exciton state of BChlc ande aggregates display fundamentally similar spectral features: (1) the magnitude of inhomogeneous broadening of these bands is about 100 cm–1; (2) at the wavelength of the maximum of each band, the amplitude of the preburnt excitation spectrum makes up 20% of the maximum amplitude of the spectrum; (3) the spectral position of each band coincides with the spectral position of the longest wavelength band of the circular dichroism spectrum; (4) the width of these bands is 2.3-times less than that of monomeric BChl in vitro.  相似文献   

12.
Self-aggregates of a synthetic zinc porphyrin worked as a light absorber and photoexcited energy donor, transferred the collected energy to a small amount of 3-acetyl-(bacterio)chlorin monomer, and induced near-infrared fluorescence from the acceptors in aqueous micellar solution. These artificial supramolecular systems are novel models of the main light-harvesting antennas of green photosynthetic bacteria, chlorosomes.  相似文献   

13.
We have studied the organization of the bacteriochlorophylls (BChl) in isolated chlorosomes of the green sulfur bacterium Chlorobium limicola UdG6040 containing about 50% BChl d and BChl c each. When the chlorosomes are treated in acidic buffer (pH 3.0) two phases in the conversion from BChl to bacteriopheophytin (BPhe) are observed as evidenced by the changes in the absorption spectrum. In the early phase the pheophytinization of BChl d occurs much faster than that of BChl c. In the later phase BChl c and BChl d are converted at similar rates. The delayed BChl c conversion observed in intact chlorosomes is interpreted in terms of spatial separation within the same chlorosome that makes BChl d more accessible to reaction with acid than BChl c. This was supported by acid treatment of in vitro pigment-lipid aggregates which showed that the pheophytinization of aggregates consisting of only BChl c or BChl d takes place with the same rate. Moreover in mixed in vitro aggrega tes where BChl d and BChl c are supposed to be scrambled the two pigments are converted to BPhe simultaneously. Acid treatment of hexanol exposed chlorosomes indicates that the spatial separation of BChl d and BChl c within the chlorosomes is maintained even if the excitonic interaction between BChls has been disturbed by hexanol. Based on these findings it is suggested that BChl d and BChl c in the chlorosome are located distal and proximal, respectively, relative to the chlorosome baseplate.  相似文献   

14.
15.
16.
17.
18.
Endo180/urokinase plasminogen activator receptor-associated protein together with the mannose receptor, the phospholipase A(2) receptor, and DEC-205/MR6-gp200 comprise the four members of the mannose receptor family. These receptors have a unique structural composition due to the presence of multiple C-type lectin-like domains within a single polypeptide backbone. In addition, they are all constitutively internalized from the plasma membrane via clathrin-mediated endocytosis and recycled back to the cell surface. Endo180 is a multifunctional receptor displaying Ca(2+)-dependent lectin activity, collagen binding, and association with the urokinase plasminogen activator receptor, and it has a proposed role in extracellular matrix degradation and remodeling. Within their short cytoplasmic domains, all four receptors contain both a conserved tyrosine-based and dihydrophobic-based putative endocytosis motif. Unexpectedly, Endo180 was found to be distinct within the family in that the tyrosine-based motif is not required for efficient delivery to and recycling from early endosomes. By contrast, receptor internalization is completely dependent on the dihydrophobic motif and modulated by a conserved upstream acidic residue. Furthermore, unlike the mannose receptor, Endo180 does not function as a phagocytic receptor in vitro. These findings demonstrate that despite an overall structural similarity, members of this receptor family employ distinct trafficking mechanisms that may reflect important differences in their physiological functions.  相似文献   

19.
The structure of the chlorosome baseplate protein CsmA from Chlorobium tepidum in a 1:1 chloroform:methanol solution was determined using liquid-state NMR spectroscopy. The data reveal that the 59-residue protein is predominantly alpha-helical with a long helical domain extending from residues V6 to L36, containing a putative bacteriochlorophyll a binding domain, and a short helix in the C-terminal part extending from residues M41 to G49. These elements are compatible with a model of CsmA having the long N-terminal alpha-helical stretch immersed into the lipid monolayer confining the chlorosome and the short C-terminal helix protruding outwards, thus available for interaction with the Fenna-Matthews-Olson antenna protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号