首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DA rat has been proposed as an animal model for the human debrisoquine 4-hydroxylase/bufuralol 1'-hydroxylase genetic deficiency. To determine the mechanism of this deficiency, we isolated and sequenced five cDNAs in the CYP2D gene subfamily including a new IID1 allele and two cDNAs of novel P450s, designated IID3 and IID5. IID3 and IID5 cDNA-deduced amino acid sequences contained 500 and 504 residues with calculated molecular weights of 56,683 and 57,081, respectively. IID5 displayed 20 amino acid differences with the IID1, yet bore only 72% and 76% similarity to IID2 and IID3. Despite an overall nucleotide similarity of 80-98% between the 4 cDNAs, a region of 134 nucleotides of sequence exists that contains only 1 base difference. This region is probably the result of gene conversion events between the P450 IID genes. Although all IID cDNAs were expressed into immunodetectable proteins using the COS cell SV40-based expression system, only IID1 could effectively catalyze the oxidation of the prototype substrate bufuralol. Expression of a cDNA isolated in an earlier study [Gonzalez, F. J., Matsunaga, T., Nagata, K., Meyer, U. A., Nebert, D. W., Pastewka, J., Kozak, C. A., Gillette, J., Gelboin, H. V., & Hardwick, J. P. (1987) DNA 6, 149-161], previously called db1 and now designated IID1v, produced a protein with a drastically reduced activity as compared to cDNA-expressed IID1 despite only four amino acid differences between the two cDNA-deduced protein sequences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
The three-dimensional (3D) model of the human fatty acid amide hydrolase (hFAAH) was constructed based on the crystal structure of the rat FAAH (PDB code 1MT5) in complex with a substrate using Modeller9v2 program. With the aid of molecular mechanics and molecular dynamics method, the last model was obtained and further assessed by Profile-3D, Prosa2003 and Procheck, which confirms that the refined model is reliable. Furthermore, the docking results of propofol and its structural analogue into the active site of hFAAH indicate that 2,6-di-sec-butyl phenol is a more preferred ligand than others, which is in good agreement with the experimental results. From the docking studies, we also suggest that Phe192, Ile238, Thr377, Leu380, Phe381, Phe388 and Leu404 in the hFAAH are seven important determinant residues in binding as they have strong van der Waal interactions with the ligand.  相似文献   

4.
Substrate specificity of platypus venom L-to-D-peptide isomerase   总被引:1,自引:0,他引:1  
The L-to-D-peptide isomerase from the venom of the platypus (Ornithorhyncus anatinus) is the first such enzyme to be reported for a mammal. In delineating its catalytic mechanism and broader roles in the animal, its substrate specificity was explored. We used N-terminal segments of defensin-like peptides DLP-2 and DLP-4 and natriuretic peptide OvCNP from the venom as substrates. The DLP analogues IMFsrs and ImFsrs (srs is a solubilizing chain; lowercase letters denote D-amino acid) were effective substrates for the isomerase; it appears to recognize the N-terminal tripeptide sequence Ile-Xaa-Phe-. A suite of 26 mutants of these hexapeptides was synthesized by replacing the second residue (Met) with another amino acid, viz. Ala, alpha-aminobutyric acid, Ile, Leu, Lys, norleucine, Phe, Tyr, and Val. It was shown that mutant peptides incorporating norleucine and Phe are substrates and exhibit L- or D-amino acid isomerization, but mutant peptides that contain residues with shorter, beta-branched or long side chains with polar terminal groups, viz. Ala, alpha-aminobutyric acid, Ile, Val, Leu, Lys, and Tyr, respectively, are not substrates. It was demonstrated that at least three N-terminal amino acid residues are absolutely essential for L-to-D-isomerization; furthermore, the third amino acid must be a Phe residue. None of the hexapeptides based on LLH, the first three residues of OvCNP, were substrates. A consistent 2-base mechanism is proposed for the isomerization; abstraction of a proton by 1 base is concomitant with delivery of a proton by the conjugate acid of a second base.  相似文献   

5.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

6.
1. Effect of amino acid administration on pancreatic secretion of digestive enzymes, amylase, trypsinogen and chymotrypsinogen was studied after wing vein injection of an amino acid (AAs) mixture (Thr, Lys, Phe, Leu, Ile, Glu, Val, His, and Met) or combinations of selected amino acids, i.e. Thr + Phe + Ile, Thr + Phe, Thr + Ile or Phe + Ile, in the presence of cholecystokinin (CCK) in chicks. 2. Time course changes of enzyme output were similar in all treatment groups having a peak within 10-30 min, except for Phe + Ile that resulted in delayed induction of the enzyme release as shown by significant increases in the last 20 min compared with those in the rest. 3. When increases in enzyme outputs for the first 30 min were compared, it was shown that the three enzyme responses brought about by the administration of the AAs mixture was almost entirely accounted for by the combined injection of Thr + Phe. 4. Neither Thr + Ile nor Phe + Ile was as effective as Thr + Phe in inducing the output of these pancreatic enzymes. 5. The present results suggest that Thr and Phe may have a specific regulatory role in the secretion of pancreatic digestive enzymes in chicks when administered simultaneously.  相似文献   

7.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

8.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

9.
The specific activity of subtilisin E, an alkaline serine protease of Bacillus subtilis, was substantially increased by optimizing the amino acid residue at position 31 (Ile in the wild-type enzyme) in the vicinity of the catalytic triad of the enzyme. Eight uncharged amino acids (Cys, Ser, Thr, Gly, Ala, Val, Leu, and Phe) were introduced at this site, which is next to catalytic Asp32, using site-directed mutagenesis. Mutant enzymes were expressed in Escherichia coli and were prepared from the periplasmic space. Only the Val and Leu substitutions gave active enzyme, and the Leu31 mutant was found to have a greatly increased activity compared to the wild-type enzyme. The other six mutant enzymes showed a marked decrease in activity. This result indicates that a branched-chain amino acid at position 31 is essential for the expression of subtilisin activity and that the level of the activity depends on side chain structure. The purified Leu31 mutant enzyme was analyzed with respect to substrate specificity, heat stability, and optimal temperature. It was found that the Leu31 replacement caused a prominent 2-6-fold increase in catalytic efficiency (kcat/Km) due to a larger kcat for peptide substrates.  相似文献   

10.
Hxt2 and Hxt1 are, respectively, high affinity and low affinity facilitative glucose transporter paralogs of Saccharomyces cerevisiae. We have previously investigated which amino acid residues of Hxt2 are important for high affinity transport activity. Studies with all the possible combinations of 12 transmembrane segments (TMs) of Hxt2 and Hxt1 revealed that TMs 1, 5, 7, and 8 of Hxt2 are necessary for high affinity transport. Systematic shuffling of the 20 amino acid residues that differ between Hxt2 and Hxt1 in these TMs subsequently identified 5 residues as important for such activity: Leu(59) and Leu(61) (TM1), Leu(201) (TM5), Asn(331) (TM7), and Phe(366) (TM8). We have now studied the relative importance of these 5 residues by individually replacing them with each of the other 19 residues. Replacement of Asn(331) yielded transporters with various affinities, with those of the Ile(331), Val(331), and Cys(331) mutants being higher than that of the wild type. Replacement of the Hxt2 residues at the other four sites yielded transporters with affinities similar to that of the wild type but with various capacities. A working homology model of the chimeric transporters containing Asn(331) or its 19 replacement residues indicated that those residues at this site that yield high affinity transporters (Ile(331), Val(331), Cys(331)) face the central cavity and are within van der Waals distances of Phe(208) (TM5), Leu(357) (TM8), and Tyr(427) (TM10). Interactions via these residues of the four TMs, which compose a half of the central pore, may thus play a pivotal role in formation of a core structure for high affinity transport.  相似文献   

11.
Expanding the scope of substrate specificity and stereoselectivity is of current interest in enzyme catalysis. Using error-prone PCR for in vitro directed evolution, the Neu5Ac aldolase from Escherichia coli has been altered to improve its catalytic activity toward enantiomeric substrates including N-acetyl-L-mannosamine and L-arabinose to produce L-sialic acid and L-KDO, the mirror-image sugars of the corresponding naturally occurring D-sugars. The first generation variant containing two mutations (Tyr98His and Phe115Leu) outside the (alpha,beta)(8)-barrel active site exhibits an inversion of enantioselectivity toward KDO and the second generation variant contains an additional amino acid change Val251Ile outside the alpha,beta-barrel active site that improves the enantiomeric formation of L-sialic acid and L-KDO. The X-ray structure of the triple mutant epNanA.2.5 at 2.3A resolution showed no significant difference between the wild-type and the mutant enzymes. We probed the potential structural 'hot spot' of enantioselectivity with saturation mutagenesis at Val251, the mutated residue most proximal to the Schiff base forming Lys165. The selected variant had an increase in k(cat) via replacement with another hydrophobic residue, leucine. Further sampling of a larger sequence space with error-prone PCR selected a third generation variant with significant improvement in L-KDO catalysis and a complete reversal of enantioselectivity.  相似文献   

12.
The effects of the substitution of amino acid residues at positions 43 and 45 of rat CYP2D1 and CYP2D2 on their microsomal contents and enzymatic functions were examined. The substitution of Val-45 of CYP2D1 by glycine decreased the microsomal content, whereas the substitution of Gly-45 of CYP2D2 by valine increased. The substitution of Leu-43 of CYP2D2 by tryptophan also increased the microsomal protein content. In reduced CO-difference spectra, CYP2D2 showed a P420 peak as well as a P450 peak, whereas CYP2D1 gave only a P450 peak. The substitution of Leu-43 and Gly-45 of CYP2D2 by valine and tryptophan, respectively, markedly decreased the P420 peak in parallel with an increase in P450 content. These substitutions did not cause remarkable changes in drug oxidation capacities (bufuralol 1'-hydroxylation and debrisoquine 4-hydroxylation) of the recombinant enzymes in terms of nmol/min/nmol CYP. The results indicate that amino acid residues at positions 43 and 45 are important for anchoring of the rat CYP2D proteins and their stabilities in the endoplasmic reticulum membrane.  相似文献   

13.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

14.
Firefly luciferase is widely used for enzymatic measurement of ATP, and its gene is used as a reporter for gene expression experiments. From our mutant library, we selected novel mutations in Photinus pyralis luciferase with higher luminescence intensity. These included mutations at Ile423, Asp436, and Leu530. Luciferase is structurally composed of a large N-terminal active site domain (residues 1-436), a flexible linker (residues 436-440) peptide, and a small C-terminal domain (residues 440-550) facing the N domain. Thus, the mutations are located at the junction of the N-terminal domain and the flexible linker, in the flexible linker peptide, and in the tip of the C-terminal domain, respectively. Substitution of Asp436 with a nonbulky amino acid such as Gly remarkably increased the substrate affinity for ATP and d-luciferin. Substitution of Ile423 with a hydrophobic amino acid such as Leu and that of Leu530 with a positively charged amino acid such as Arg increased the substrate affinity and the turnover rate. Combining these mutations, we obtained luciferases that generate more than 10-fold higher luminescence intensity than the wild-type enzyme.  相似文献   

15.
PKI-(5-24)-amide is a 20-residue peptide with the sequence, Thr5-Thr-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-A la-Ile-His- Asp24-NH2, that corresponds to the active portion of the heat-stable inhibitor protein of cAMP-dependent protein kinase (Cheng, H.-C., Kemp, B. E., Pearson, R. B., Smith, A. J., Misconi, L., Van Patten, S. M., and Walsh, D. A. (1986) J. Biol. Chem. 261, 989-992). Amino acid residues in PKI-(5-24)-amide responsible for the potent inhibition (Ki = 2.3 nM) of the catalytic subunit of protein kinase were further investigated using deletion and substitution analogs of the synthetic peptide. Residues 5, 23, and 24 were not required for activity since the 17-residue PKI-(6-22)-amide retained full potency. Sequential removal of the first seven amino acids from the NH2 terminus of PKI-(5-24)-amide caused a progressive 50-fold loss of inhibitory potency. In contrast, substitution of either Thr6, Asp9, or Ile11 with alanine, or Ala8 by leucine, in PKI-(5-22)-amide produced less than 3-fold decreases in potency. Of the 2 aromatic residues in PKI-(5-22)-amide, the individual substitution of Phe10 and Tyr7 by alanine caused, respectively, 90- and 5-fold decreases in inhibitory potency, demonstrating important roles for each. This NH2-terminal portion of the peptide is believed to contain a significant portion of alpha-helix. Many recognition or structural determinants are also essential in the COOH-terminal portion of PKI-(5-22)-amide. In addition to the basic subsite provided by the three arginines, several other of the residues are critical for full inhibitory potency. Substitution of Ile22 by glycine in either PKI-(5-22)-amide or PKI-(14-22)-amide lowered the inhibitory potency by 150- and 50-fold, respectively. Separate replacement of Gly17 or Asn20, in either PKI-(5-22)-amide or PKI-(14-22)-amide, caused 7-15-fold decreases in potency. Substitution of both Gly17 and Asn20 together (in PKI-(14-22)-amide) produced a synergistic loss of inhibitory activity. [Leu13,Ile14]PKI-(5-22)-amide, a doubly substituted analog exhibited a 42-fold increase in Ki value. We conclude that Ser13 and/or Gly14, Gly17, Asn20, and Ile22 each contribute important features to the binding of these inhibitory peptides to the protein kinase, either by providing recognition determinants, inducing structure, and/or allowing essential peptide backbone flexibility.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Point mutations of a part of the H(4)-H(5) loop (Leu(354)-Ile(604)) of Na(+)/K(+)-ATPase have been used to study the ATP and TNP-ATP binding affinities. Besides the previously reported amino acid residues Lys(480), Lys(501), Gly(502), and Cys(549), we have found four more amino acid residues, viz., Glu(446), Phe(475), Gln(482), and Phe(548), completing the ATP-binding pocket of Na(+)/K(+)-ATPase. Moreover, mutation of Arg(423) has also resulted in a large decrease in the extent of ATP binding. This residue, localized outside the binding pocket, seems to play a key role in supporting the proper structure and shape of the binding site, probably due to formation of a hydrogen bond with Glu(472). On the other hand, only some minor effects were caused by mutations of Ile(417), Asn(422), Ser(445), and Glu(505).  相似文献   

17.
Lipid extracts of bovine pulmonary surfactant contain two very hydrophobic surfactant-associated proteins (SP) designated SP-B (15 kDa nonreduced) and SP-C (3.5 kDa). These two low molecular weight apoproteins were delipidated and purified on silica SEP-PAK cartridges using various reagents. Dansylation studies revealed that the 15 kDa apoprotein has three N-termini: Phe, Leu and Ile, while the 3.5 kDa apoprotein has two N-termini: Leu and Ile. In either protein, only a very small amount of N-Ile is present. Quantitative N-terminal dansylation analysis of the 15 kDa protein indicated that Phe and Leu (plus Ile) are present in a 1:1 ratio. Carboxy-terminal analysis showed that the 15 kDa protein contains C-terminal Gly, and the 3.5 kDa protein contains C-terminal Leu. Gas-phase amino terminal sequencing of the 15 kDa protein revealed almost exclusively the Phe-polypeptide (SP-B). These results suggest that the 15 kDa apoprotein is not an oligomer of SP-B and SP-C. The reason that analysis of SP-B reveals N-terminal Leu and Ile by dansylation which cannot be confirmed by amino acid sequencing is not known.  相似文献   

18.
Lipoxygenases (LOXs) contain a hydrophobic substrate channel with the conserved Gly/Ala determinant of regio- and stereospecificity and a conserved Leu residue near the catalytic non-heme iron. Our goal was to study the importance of this region (Gly(332), Leu(336), and Phe(337)) of a lipoxygenase with catalytic manganese (13R-MnLOX). Recombinant 13R-MnLOX oxidizes 18:2n-6 and 18:3n-3 to 13R-, 11(S or R)-, and 9S-hydroperoxy metabolites (~80-85, 15-20, and 2-3%, respectively) by suprafacial hydrogen abstraction and oxygenation. Replacement of Phe(337) with Ile changed the stereochemistry of the 13-hydroperoxy metabolites of 18:2n-6 and 18:3n-3 (from ~100% R to 69-74% S) with little effect on regiospecificity. The abstraction of the pro-S hydrogen of 18:2n-6 was retained, suggesting antarafacial hydrogen abstraction and oxygenation. Replacement of Leu(336) with smaller hydrophobic residues (Val, Ala, and Gly) shifted the oxygenation from C-13 toward C-9 with formation of 9S- and 9R-hydroperoxy metabolites of 18:2n-6 and 18:3n-3. Replacement of Gly(332) and Leu(336) with larger hydrophobic residues (G332A and L336F) selectively augmented dehydration of 13R-hydroperoxyoctadeca-9Z,11E,15Z-trienoic acid and increased the oxidation at C-13 of 18:1n-6. We conclude that hydrophobic replacements of Leu(336) can modify the hydroperoxide configurations at C-9 with little effect on the R configuration at C-13 of the 18:2n-6 and 18:3n-3 metabolites. Replacement of Phe(337) with Ile changed the stereospecific oxidation of 18:2n-6 and 18:3n-3 with formation of 13S-hydroperoxides by hydrogen abstraction and oxygenation in analogy with soybean LOX-1.  相似文献   

19.
Site-directed mutagenesis has been used to change three amino acid residues involved in the binding of inhibitors (Asn67Ile; Gln92Val and Leu204Ser) within the active site of human carbonic anhydrase (CA, EC 4.2.1.1) II (hCA II). Residues 67, 92 and 204 were changed from hydrophobic to hydrophilic ones, and vice versa. The Asn67Ile and Leu204Ser mutants showed similar k(cat)/K(M) values compared to the wild type (wt) enzyme, whereas the Gln92Val mutant was around 30% less active as a catalyst for CO(2) hydration to bicarbonate compared to the wt protein. Affinity for sulfonamides/sulfamates was decreased in all three mutants compared to wt hCA II. The effect was stronger for the Asn67Ile mutant (the closest residue to the zinc ion), followed by the Gln92Val mutant (residue situated in the middle of the active site) and weakest for the Leu204Ser mutant, an amino acid situated far away from the catalytic metal ion, at the entrance of the cavity. This study shows that small perturbations within the active site architecture have influences on the catalytic efficiency but dramatically change affinity for inhibitors among the CA enzymes, especially when the mutated amino acid residues are nearby the catalytic metal ion.  相似文献   

20.
Haloalkane dehalogenases catalyze cleavage of the carbon-halogen bond in halogenated aliphatic compounds, resulting in the formation of an alcohol, a halide, and a proton as the reaction products. Three structural features of haloalkane dehalogenases are essential for their catalytic performance: (i) a catalytic triad, (ii) an oxyanion hole, and (iii) the halide-stabilizing residues. Halide-stabilizing residues are not structurally conserved among different haloalkane dehalogenases. The level of stabilization of the transition state structure of S(N)2 reaction and halide ion provided by each of the active site residues in the enzymes DhlA, LinB, and DhaA was quantified by quantum mechanic calculations. The residues that significantly stabilize the halide ion were assigned as the primary (essential) or the secondary (less important) halide-stabilizing residues. Site-directed mutagenesis was conducted with LinB enzyme to confirm location of its primary halide-stabilizing residues. Asn38Asp, Asn38Glu, Asn38Phe, Asn38Gln, Trp109Leu, Phe151Leu, Phe151Trp, Phe151Tyr, and Phe169Leu mutants of LinB were constructed, purified, and kinetically characterized. The following active site residues were classified as the primary halide-stabilizing residues: Trp125 and Trp175 of DhlA; Asn38 and Trp109 of LinB; and Asn41 and Trp107 of DhaA. All these residues make a hydrogen bond with the halide ion released from the substrate molecule, and their substitution results in enzymes with significantly modified catalytic properties. The following active site residues were classified as the secondary halide-stabilizing residues: Phe172, Pro223, and Val226 of DhlA; Trp207, Pro208, and Ile211 of LinB; and Phe205, Pro206, and Ile209 of DhaA. The differences in the halide stabilizing residues of three haloalkane dehalogenases are discussed in the light of molecular adaptation of these enzymes to their substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号