首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serrano A  Losada M 《Plant physiology》1988,86(4):1116-1119
Action spectra for the assimilation of nitrate and nitrite have been obtained for several blue-green algae (cyanobacteria) with different accessory pigment composition. The action spectra for both nitrate and nitrite utilization by nitrate-grown Anacystis nidulans L-1402-1 cells exhibited a clear peak at about 620 nanometers, corresponding to photosystem II (PSII) C-phycocyanin absorption, the contribution of chlorophyll a (Chl a) being barely detectable. The action spectrum for nitrate reduction by a nitrite reductase mutant of A. nidulans R2 was very similar. All these action spectra resemble the fluorescence excitation spectrum of cell suspensions of the microalgae monitored at 685 nanometers—the fluorescence band of Chl a in PSII. In contrast, the action spectrum for nitrite utilization by nitrogen-starved A. nidulans cells, which are depleted of C-phycocyanin, showed a maximum near 680 nanometers, attributable to Chl a absorption. The action spectrum for nitrite utilization by Calothrix sp. PCC 7601 cells, which contain both C-phycoerythrin and C-phycocyanin as PSII accessory pigments, presented a plateau in the region from 550 to 630 nanometers. In this case, there was also a clear parallelism between the action spectrum and the fluorescence excitation spectrum, which showed two overlapped peaks with maxima at 562 and 633 nanometers. The correlation observed between the action spectra for both nitrate and nitrite assimilation and the light-harvesting pigment content of the blue-green algae studied strongly suggests that phycobiliproteins perform a direct and active role in these photosynthetic processes.  相似文献   

2.
Flux response curves were determined at 16 wavelengths of light for the conductance for water vapor of the lower epidermis of detached leaves of Xanthium strumarium L. An action spectrum of stomatal opening resulted in which blue light (wavelengths between 430 and 460 nanometers) was nearly ten times more effective than red light (wavelengths between 630 and 680 nanometers) in producing a conductance of 15 centimoles per square meter per second. Stomata responded only slightly to green light. An action spectrum of stomatal responses to red light corresponded to that of CO2 assimilation; the inhibitors of photosynthetic electron transport, cyanazine (2-chloro-4[1-cyano-1-methylethylamino]-6-ethylamino-s-triazine) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, eliminated the response to red light. This indicates that light absorption by chlorophyll is the cause of stomatal sensitivity to red light. Determination of flux response curves on leaves in the normal position (upper epidermis facing the light) or in the inverted position (lower epidermis facing the light) led to the conclusion that the photoreceptors for blue as well as for red light are located on or near the surfaces of the leaves; presumably they are in the guard cells themselves.  相似文献   

3.
Curtis CR 《Plant physiology》1972,49(2):235-239
An action spectrum was determined for the photoinduced formation of perithecia in a homothallic strain of Nectria haematococca Berk. and Br. var. cucurbitae (Snyder and Hansen) Dingley. Dose-response curves for perithecial formation were obtained from 340 to 510 nanometers at 10-nanometer intervals. Radiation longer than 510 nanometers was not effective for inducing perithecial formation. The action spectrum indicated peaks of activity near 360, 440, and 480 nanometers with shoulders near 420 and 460 nanometers. Minima occurred near 350 nanometers, 390 to 410 nanometers, and 470 nanometers. The general shape of this action spectrum appears to be similar to those obtained for many different near ultraviolet-blue-sensitive organisms in which a flavoprotein molecule was postulated to be the photoreceptor.  相似文献   

4.
An action spectrum for anthocyanin formation in dark-grown broom sorghum (Sorghum bicolor Moench, cv Acme Broomcorn and cv Sekishokuzairai Fukuyama Broomcorn) seedlings was determined over the wavelength range from 260 to 735 nanometers. The action peaks were at 290, 650, 385, and 480 nanometers in descending order of height. The action of the 290-nanometer peak was not affected by subsequently given far red light, whereas those of the other three action peaks were nullified completely. The nullification of the 385-nanometer peak action by far red light was reversible. When an irradiation at these action peaks was followed by a phytochrome-saturating fluence of red light irradiation, the action of the 290-nanometer peak remained, whereas that of the 385-nanometer peak as well as those of the 650- and 480-nanometer peaks was masked by the action of the second irradiation. These findings suggested that the 290- and 385-nanometer action peaks involved different photoreceptors, the latter being phytochrome. The blue light-absorbing photoreceptor as reported to be a prerequisite for phytochrome action in milo sorghum was not found to exist in the broom sorghums.

The action spectrum deprived of the involvement of phytochrome was determined in the ultraviolet region by irradiating with far red light following monochromatic ultraviolet light. The spectrum had a single intense peak at 290 nanometers and no action at all at wavelengths longer than 350 nanometers.

  相似文献   

5.
Action spectra derived from dose-response curves measured for various processes associated with chloroplast development in Euglena gracilis var. bacillaris are presented. The action spectrum for chlorophyll synthesis during the first 36 hours of continuous illumination of dark-grown resting cells resembles the absorption spectrum of protochlorophyll(ide). The action spectrum for the preillumination phase of potentiation, during which preillumination followed by a dark period brings about lag elimination in chlorophyll synthesis when the cells are subsequently exposed to postilluminating light, shows a high peak in the blue region (at about 433 nm) with a small peak in the yellow-orange region (at about 597 nm); the postillumination phase yields an action spectrum very similar to that obtained for chlorophyll synthesis in continuous light in normal, unpotentiated cells, with peaks at 433 and 631 nm. Alkaline DNase and TPN-linked triose phosphate dehydrogenase, two plastid enzymes which are synthesized outside the chloroplast, yield action spectra which are consistent with protochlorophyll(ide) being the major light receptor. The action spectra which implicate pigments resembling protochlorophyll(ide) holochrome have blue to red peak ratios in the vicinity of 5:1 as does the absorption spectrum of the protochlorophyllide holochrome from beans; the action spectrum is not identical with the holochrome spectrum indicating that the Euglena holochrome may differ from the bean pigment in details of its absorption spectrum. The action spectrum for preillumination, shows a ratio of the blue peak to the red effectiveness of about 24:1. This suggests that preillumination is controlled by a photoreceptor different from the protochlorophyll(ide) holochrome.  相似文献   

6.
It has previously been demonstrated that far-red irradiation of dry Lactuca sativa L. seeds results in inhibition of subsequent germination. Although red has no effect on dry seeds, a red irradiation following a farred irradiation reverses the effect of far-red. This phenomenon is most noticeable in seeds with artificially raised levels of phytochrome in the far-red absorbing form. Qualitatively similar results have been found for the seeds of Plantago major L., Sinapis arvensis L., and Bromus sterilis L. Action spectra studies on Plantago seeds show that the action peaks for promotion and inhibition of germination of hydrated seeds are at 660 and 730 nanometers, respectively. The action spectrum for inhibition of subsequent germination following irradiation of dry seeds is qualitatively and quantitatively similar to that for hydrated seeds, with an action peak at 730 nanometers, indicating absorption by phytochrome in the far-red absorbing form. However, the action spectrum for the reversal of this far-red effect on dry seeds has a broad peak at 680 nanometers and subsidiary peaks at 650 and 600 nanometers. It is proposed that this effect is due to light absorption by the phytochrome intermediate complex meta-Fa, and that the action spectrum reflects the in vivo absorption properties of this intermediate.  相似文献   

7.
We assessed the influence of ultraviolet radiation (UV) on net photosynthetic CO2 assimilation rate (Pn) in Sorghum bicolor, with particular attention to examining whether UV can enhance Pn via direct absorption of UV and absorption of UV‐induced blue fluorescence by photosynthetic pigments. A polychromatic UV response spectrum of leaves was constructed by measuring Pn under different UV supplements using filters that had sharp transmission cut‐offs from 280 to 382 nm, against a background of non‐saturating visible light. When the abaxial surface was irradiated, Pn averaged 4.6% higher with the UV supplement that cut‐off UV at 311 nm, compared to lower and higher UV wavelength supplements. This former supplement differed from higher wavelength supplements by primarily providing more UV between 320 and 350 nm. To assess the possibility of direct absorption of UV by photosynthetic pigments, we measured the absorbance of extracted chlorophylls. Chlorophyll a had absorbance peaks at 340 and 389 nm that were 49 and 72% of that at the sorét peak. Chlorophyll b had absorbance peaks at 315 and 346 nm that were both 35% of that at the sorét peak. Since the epidermis transmits some UV, the strong UV absorbance of chlorophyll implies a potential role for irradiance beyond the bounds of the conventionally defined photosynthetically active radiation waveband (400–700 nm). To assess the role of absorption of UV‐induced blue fluorescence, we measured the UV‐induced fluorescence excitation and emission spectra of leaves. Abaxial excitation peaked at 328 nm, while emission peaked at 446 nm. In this analysis, we used our abaxial fluorescence excitation spectrum and the UV photosynthetic inhibition spectrum of Caldwell et al. (1986) to weight the UV irradiance with each cut‐off filter, thereby estimating the potential contribution of UV‐induced blue fluorescence to photosynthesis and the inhibitory effects of UV irradiance on photosynthesis, respectively. With a non‐saturating visible background, we estimate that the absorption of UV‐induced blue fluorescence and the direct absorption of UV by photosynthetic pigments maximally enhanced photosynthesis by about 1% each with the UV supplement that cut‐off UV at 311 nm. We suggest that a portion of the incident UV on the S. bicolor leaves was used to drive photosynthesis.  相似文献   

8.
Sung FJ  Chen JJ 《Plant physiology》1989,90(2):773-777
Lanceolate leaflet soybean (Glycine max L. Merrill) has been known to photosynthesize more CO2 per unit leaf area than normal leaflet soybean. The exact reason for this increase in photosynthetic rate is still unclear. The present study was undertaken to investigate the leaf photosynthetic rate and other physiological traits in relation to chloroplast of lanceolate leaflet soybean. Ontogenic changes in apparent photosynthesis (AP) were related primarily to variations in the amount of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) per unit leaf area, and only secondarily to difference in specific activity of the said enzyme. Moreover, lanceolate leaflet consistently maintained a higher leaf AP, higher Rubisco activity, and more chloroplasts per unit leaf area basis than did normal leaflet soybean throughout leaf ontogeny. However, lanceolate soybean tended to have lower AP and Rubisco activity on a chloroplast basis. The superiority of leaf AP and other leaf physiological traits, expressed on a leaf area basis, in lanceolate leaflet soybean is associated with a corresponding increase in chloroplast number.  相似文献   

9.
The action spectrum for the light-activated destruction of phytochrome in etiolated Avena seedlings has been determined. There are 2 broad maxima, one between 380 and 440 mμ, the other between 600 and 700 mμ. peaking at about 660 mμ. On an incident energy basis, the red region of the spectrum is more efficient than the blue by about one order of magnitude in activating phytochrome disappearance. Both the red absorbing as well as the far-red absorbing forms of phytochrome are destroyed after exposure of Avena seedling to either red or blue light.

From the action spectrum and photoreversibility of pigment loss, we conclude that phytochrome acts as a photoreceptor for the photoactivation of its metabolically-based destruction. We suggest that another pigment might also be associated with the disappearance of phytochrome in oat seedlings exposed to blue light.

  相似文献   

10.
We have developed protocols for phase shifting the circadian rhythm of Chlamydomonas reinhardtii by light pulses. This paper describes the photobiology of phase-resetting the Chlamydomonas clock by brief (3 seconds to 15 minutes) light pulses administered during a 24 hour dark period. Its action spectrum exhibited two prominent peaks, at 520 and 660 nanometers. The fluence at 520 nanometers required to elicit a 4 hour phase shift was 0.2 millimole photon per square meter, but the pigment that is participating in resetting the clock under these conditions is unknown. The fluence needed at 660 nanomoles to induce a 4 hour phase shift was 0.1 millimole photon per square meter, which is comparable with that needed to induce the typical low fluence rate response of phytochrome in higher plants. However, the phase shift by red light (660 nanometers) was not diminished by subsequent administration of far-red light (730 nanometers), even if the red light pulse was as short as 0.1 second. This constitutes the first report of a regulatory action by red light in Chlamydomonas.  相似文献   

11.
The photochemistry of vesicular and detergent-solubilized preparations of plasma membrane-associated ATPase was investigated in Rosa damascena. The cholate-solubilized ATPase activity fractionated into two peaks on a Sephadex G-150 column with simple, but different ultraviolet (UV) sensitivities. The larger enzyme was UV sensitive; the smaller enzyme was relatively insensitive. The activity of both ATPase fractions depended on environment: both were inactive in cholate, relatively inactive in phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol, and active in phosphatidylglycerol and phosphatidylserine. The UV sensitivities of both fractions also depended on their environment. For the UV sensitive fraction, the action spectrum differed in the 300 to 400 nanometers range when the fraction was irradiated with and without lipids. For the resistant fraction, UV sensitivity at 290 nanometers differed (up to 6-fold) in different lipids. The resistant fraction solubilized in octylglucoside had an action spectrum very different from that in cholate or in lipid vesicles. The absorption spectra of the different preparations reflected the action spectra. For both UV sensitive and insensitive fractions, the action spectra for photoinactivation had peaks at 290 nanometers, suggesting that the chromophores were tryptophanyl residues. The loss of ATPase activity was strictly correlated with the loss of fluorescence from tryptophan in the partially purified enzymes. Cs+ protected the UV sensitive activity but not the insensitive one. We propose a model which explains the difference in UV sensitivities based on the positions of the tryptophan residues in the two proteins.  相似文献   

12.
13.
The loss of chlorophyll and total leaf nitrogen during autumnal senescence of leaves from the deciduous tree Platanus occidentalis L. was accompanied by a marked decline in the photosynthetic capacity of O2 evolution on a leaf area basis. When expressed on a chlorophyll basis, however, the capacity for light-and CO2-saturated O2 evolution did not decline, but rather increased as leaf chlorophyll content decreased. The photon yield of O2 evolution in white light (400-700 nanometers) declined markedly with decreases in leaf chlorophyll content below 150 milligrams of chlorophyll per square meter on both an incident and an absorbed basis, due largely to the absorption of light by nonphotosynthetic pigments which were not degraded as rapidly as the chlorophylls. Photon yields measured in, and corrected for the absorptance of, red light (630-700 nanometers) exhibited little change with the loss of chlorophyll. Furthermore, PSII photochemical efficiency, as determined from chlorophyll fluorescence, remained high, and the chlorophyll a/b ratio exhibited no decline except in leaves with extremely low chlorophyll contents. These data indicate that the efficiency for photochemical energy conversion of the remaining functional components was maintained at a high level during the natural course of autumnal senescence, and are consistent with previous studies which have characterized leaf senescence as being a controlled process. The loss of chlorophyll during senescence was also accompanied by a decline in fluorescence emanating from PSI, whereas there was little change in PSII fluorescence (measured at 77 Kelvin), presumably due to decreased reabsorption of PSII fluorescence by chlorophyll. Nitrogen was the only element examined to exhibit a decline with senescence on a dry weight basis. However, on a leaf area basis, all elements (C, Ca, K, Mg, N, P, S) declined in senescent leaves, although the contents of sulfur and calcium, which are not easily retranslocated, decreased to the smallest extent.  相似文献   

14.
The regulation of nonpathogenic tumorous growths on tomato plants by red and far-red radiation was studied using leaf discs floated on water and irradiated from beneath. It was found that red light (600-700 nanometers) was required for the induction of tumors on tomato (Lycopersicon hirsutum Humb. & Bonpl. Plant Introduction LA 1625), while both blue (400-500 nanometers) and green (500-600 nanometers) light had little effect on tumor development. Detailed studies with red light demonstrated that tumor development increased with increasing photon flux and duration, though duration was the more significant factor. It was observed that tumor development could be prevented by the addition of far-red irradiance to red irradiance or by providing far-red irradiance immediately following red irradiance. The effectiveness of red and farred irradiance in the regulation of tumor development indicates phytochrome involvement in this response. These findings should provide additional insight into the multiplicity of physiological factors regulating the development of nonpathogenic tumorous growths in plants.  相似文献   

15.
The action spectrum for the initiation of fruiting (primordium formation) in Favolus arcularius was determined on the equal response basis. The detectable effect of light was observed in the region between 350 to 560 nanometers, showing six distinct peaks at 374, 398, 424, 446, 480, and 514 nanometers. The half maximum response is reached with 1.8 × 108 ergs per cm2 at the most effective wavelength, 398 nanometers. Since the inhibitors, diphenylamine and quinacrine, had no consistent effect on the primordium formation, it is suggested that the possible photoreceptor pigment(s) may be neither carotenoid nor flavinoid.  相似文献   

16.
Treatment of etiolated pea (Pisum sativum (L. cv. Alaska) seedlings with 2′-isopropyl-4′-(trimethylammonium chloride)-5′-methylphenyl piperidine-1-carboxylate (Amo-1618) prior to irradiation with white light inhibits photomorphogenesis and formation and stacking of thylakoid membranes in the chloroplasts, as well as (−)-kaur-16-ene (ent-kaurene)biosynthesis. Exogenous gibberellic acid also inhibits greening. A crudely determined action spectrum for the photoinduction of ent-kaurene biosynthesis shows two peaks, one in the blue region at 458 to 490 nanometers and another in the red region at 606 to 678 nanometers. The possible participation of phytochrome in the photoinduction of ent-kaurene biosynthesis is indicated by comparative effects of red, far red, and alternating red/far red irradiations on enhancement of enzyme activity. The activity of blue light as well as red shows a similarity of the photoinduction of ent-kaurene synthesis activity to the high irradiance responses, and indicates probable participation of a second photoreceptor. From these observations, it is concluded that photoinduction of ent-kaurene biosynthesis and chloroplast development in shoots are closely linked processes.  相似文献   

17.
Some spectral properties of pea phytochrome in vivo and in vitro   总被引:7,自引:5,他引:2       下载免费PDF全文
The transformation difference spectrum for phytochrome (Pr spectrum minus Pfr spectrum) in pea tissue is determined below 560 nanometers and compared with similar data on phytochrome in vitro The difference spectrum in vivo between phytochrome intermediates and Pfr is also shown for comparison with the data on phytochrome solutions. These comparisons show that the peaks in the spectra occurring in the blue wave lengths are shifted to shorter wave lengths and are much enhanced when phytochrome is extracted from the cell and placed in solution. The results indicate that the physicochemical state of phytochrome in the cell may be different from that of the extracted pigment.  相似文献   

18.
Action Spectrum of Coccolith Formation   总被引:1,自引:0,他引:1  
The action spectrum of coccolith formation in Coccolithus huxleyi was determined by measuring the uptake of carbon-14 in coccoliths in four-hour experiments as a function of light intensity at each of seven wavelengths. An action spectrum | of photosynthetic carbon assimilation was obtained at the same time. The coccolith action spectrum had peaks at wavelengths of about 440 nm and 670 nm. probably corresponding to the regions of maximum cellular absorption and carbon assimilation. However, blue light appeared to be relatively more efficient in coccolith formation than in carbon assimilation. The results suggest that light-dependent coccolith formation may be catalyzed by two photochemical reactions, one mediated by chloroplast pigments and the other by some pigment absorbing specifically in the blue part of the spectrum.  相似文献   

19.
Photosynthetic action spectra of pine needles have been measured with an automatic recording method. A thin longitudinal cut from the flat surface of the needle was placed on top of an oxygen sensor and illuminated with monochromatic light in the range 400–700 nm. Good correspondence between absorption and action spectra was obtained in the range 550–700 nm. In the blue part of the spectrum photosynthetic efficiency was low compared with absorption. This low effect in blue light is probably due to screening absorption by photosynthetically inactive carotenoids. One-year-old needles showed a higher effect in the blue part of the spectrum than did current year needles. Needles from seedlings grown in the open had a lower photosynthetic effect in the blue part than needles from seedlings grown in a greenhouse. Pigment analyses support the idea that these differences are due to differences in the ratio chlorophylls/total carotenoids and/or differences in the composition of the carotenoid pigments.  相似文献   

20.
Nonphotosynthetic retardation of chloroplast senescence by light   总被引:1,自引:3,他引:1       下载免费PDF全文
Haber AH  Thompson PJ  Walne PL  Triplett LL 《Plant physiology》1969,44(11):1619-1625,1627-1628
Excised apical portions of green wheat leaf sections were treated with aminotriazole to prevent formation of new chloroplasts. Illumination retarded the decline in chlorophyll content per leaf section, the disintegration of chloroplast ultrastructure, and the loss of capacity for photosynthetic carbon fixation. We interpret these 3 effects of illumination as facets of a single light effect in retarding chloroplast senescence. This light effect in retarding chloroplast senescence has features differing from characteristics of photosynthetic carbon fixation. For example, A) application of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1, 1-dimethylurea did not decrease, and may have even slightly increased, the effectiveness of light; B) although the action spectrum contains peaks in the blue and red regions, it differs from the action spectrum for photosynthetic CO2 assimilation in wheat; C) in nonphotosynthesizing tissue, application of sugars did not retard chloroplast senescence; D) light saturation was achieved by only a few hundred microwatts/cm2. Considered together with the well-known light requirement for chloroplast formation, our results indicate that light has a dual, photomorphogenetic control in maintaining the green status of the plant by also exerting a second effect: retarding of senescence of chloroplasts already present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号