首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dehydroepiandrosterone (DHEA) is an endogenous adrenal steroid hormone with controversial actions in humans. We previously reported that DHEA has opposing actions in endothelial cells to stimulate phosphatidylinositol (PI) 3-kinase/Akt/endothelial nitric-oxide synthase leading to increased production of nitric oxide while simultaneously stimulating MAPK-dependent secretion of the vasoconstrictor ET-1. In the present study we hypothesized that DHEA may stimulate PI 3-kinase-dependent phosphorylation of FoxO1 in endothelial cells to help regulate endothelial function. In bovine or human aortic endothelial cells (BAEC and HAEC), treatment with DHEA (100 nM) acutely enhanced phosphorylation of FoxO1. DHEA-stimulated phosphorylation of FoxO1 was inhibited by pretreatment of cells with wortmannin (PI 3-kinase inhibitor) or H89 (protein kinase A (PKA) inhibitor) but not ICI182780 (estrogen receptor blocker), or PD98059 (MEK (MAPK/extracellular signal-regulated kinase kinase) inhibitor). Small interfering RNA knockdown of PKA inhibited DHEA-stimulated phosphorylation of FoxO1. DHEA promoted nuclear exclusion of FoxO1 that was blocked by pretreatment of cells with wortmannin, H89, or by small interfering RNA knockdown of PKA. DHEA treatment of endothelial cells increased PKA activity and intracellular cAMP concentrations. Transfection of BAEC with a constitutively nuclear FoxO1 mutant transactivated a co-transfected ET-1 promoter luciferase reporter. Treatment of BAEC with DHEA inhibited transactivation of the ET-1 promoter reporter in cells overexpressing FoxO1. ET-1 promoter activity and secretion in response to DHEA treatment was augmented by PI 3-kinase blockade and inhibited by MAPK blockade. We conclude that DHEA stimulates phosphorylation of FoxO1 via PI 3-kinase- and PKA-dependent pathways in endothelial cells that negatively regulates ET-1 promoter activity and secretion. Balance between PI 3-kinase-dependent inhibition and MAPK-dependent stimulation of ET-1 secretion in response to DHEA may determine whether DHEA supplementation improves or worsens cardiovascular and metabolic function.  相似文献   

2.
CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells   总被引:17,自引:0,他引:17  
The outcome of dendritic cell (DC) presentation of P815AB, a tolerogenic tumor/self peptide, depends on a balance between the respective immunogenic and tolerogenic properties of myeloid (CD8 alpha(-)) and lymphoid (CD8 alpha(+)) DC. We have previously shown that CD8(-) DC can be primed by IL-12 to overcome inhibition by the CD8(+) subset and initiate immunogenic presentation in vivo when the two types of peptide-pulsed DC are cotransferred into recipient hosts. IFN-gamma enhances the inhibitory activity of CD8(+) DC on Ag presentation by the other subset, blocking the ability of IL-12-treated CD8(-) DC to overcome suppression. We report here that CD40 ligation on lymphoid DC ablated their inhibitory function on Ag presentation as well as IFN-gamma potentiation of the effect. CD40 modulation of IFN-gamma action on lymphoid DC involved a reduction in IFN-gamma R expression and tryptophan-degrading ability. This effect was accompanied in vitro by an impaired capacity of the CD40-modulated and IFN-gamma-treated DC to initiate T cell apoptosis. In vivo, not only did CD40 triggering on lymphoid DC abrogate their tolerogenic activity, but it also induced the potential for immunogenic presentation of P815AB. Importantly, a pattern similar to P815AB as well as CD40 modulation of lymphoid DC function were observed on testing reactivity to NRP, a synthetic peptide mimotope recognized by diabetogenic CD8(+) T cells in nonobese diabetic mice.  相似文献   

3.
CEACAM1 (also known as CD66a) is a transmembrane glycoprotein that mediates homophilic intercellular interactions that influence cellular growth, immune cell activation, and tissue morphogenesis. Various studies have suggested a link between CEACAM1 and cellular apoptosis, including a recent demonstration that ERK1/2 signaling is triggered downstream of CEACAM1. In this study, we reveal that CEACAM1-long binding confers survival signals to human peripheral blood mononuclear cells. CEACAM-specific antibodies effectively protected peripheral blood mononuclear cells from apoptosis, with this effect being particularly dramatic for primary monocytes that undergo spontaneous apoptosis during in vitro culture. This protective effect was reiterated when using soluble CEACAM1, which binds to cell-surface CEACAM1 via homophilic interactions. Monocyte survival correlated with a CEACAM1-dependent up-regulation of the cellular inhibitor of apoptosis Bcl-2 and the abrogation of caspase-3 activation. CEACAM1 binding triggered a phosphatidylinositol 3-kinase-dependent activation of the protein kinase Akt without influencing the activity of extracellular signal-related kinase ERK, whereas the phosphatidylinositol 3-kinase-specific inhibitor LY294002 effectively blocked the protective effect of CEACAM1. Together, this work indicates that CEACAM1 confers a phosphatidylinositol 3-kinase- and Akt-dependent survival signal that inhibits mitochondrion-dependent apoptosis of monocytes. By controlling both ERK/MEK and PI3K/Akt pathways, CEACAM1 functions as a key regulator of contact-dependent control of cell survival, differentiation, and growth.  相似文献   

4.
The CD40 receptor is a member of the tumour necrosis factor receptor family and is widely expressed on various cell types. The antitumour activity of CD40 agonist antibody has been observed in B-cell-derived malignancies, but its activity on ovarian cancer remains unclear. However, in this paper, we first confirmed that the anti-CD40 agonist antibody could inhibit the growth of ovarian cancer cells and induce apoptosis. This study investigated the expression of CD40 by ovarian carcinoma tissues and cell lines, at the same time, we evaluated the effect of a recombinant soluble human CD40L (rshCD40L) and an anti-CD40 agonist antibody on cell growth and apoptosis. Flow cytometry and immunohistochemistry assay demonstrated that CD40 was expressed on ovarian carcinoma cell lines and primary ovarian carcinoma cells derived from ascites, as well as on ovarian carcinoma tissues. The growth inhibition of rshCD40L and the anti-CD40 agonist antibody on ovarian carcinoma cells was examined by MTT assay, and the proportion of apoptotic tumour cells was analysed by flow cytometry and Hoechst staining. Our study showed that CD40 was expressed on all ovarian carcinoma cell lines and was examined in 86.2% (162/188) of ovarian cancer tissue samples, but not in normal ovarian tissues (n?=?20). Treatment with rshCD40L or anti-CD40 agonist antibody significantly inhibited ovarian carcinoma cell growth and induced apoptosis. Theses results suggest that CD40 is expressed on ovarian carcinoma cells, moreover, that rshCD40L and anti-CD40 agonist antibody have therapeutic potential to inhibit human ovarian cancer growth.  相似文献   

5.
Previous work has shown that stimulation of APCs via CD40 strongly influences the outcome of a CD8 T cell response. In this study, we examined the effect of CD40 ligation on peripheral tolerance induction of self-reactive CD8 T cells in an adoptive transfer model. Naive CD8 T cells from TCR-transgenic (tg) mice specific for the gp33 epitope of lymphocytic choriomeningitis virus were tolerized when transferred into H8-tg mice expressing the gp33 epitope under the control of a MHC class I promoter. However, if the H8 recipient mice were treated with agonistic anti-CD40 Abs, TCR-tg cells vigorously proliferated, and induced destruction of lymphoid organs and hepatitis. Break of peripheral tolerance induction was B cell independent and did not require CD28/B7 interactions. These findings provide further in vivo evidence for the crucial role of the activation state of the APC in peripheral tolerance induction and suggest the need for caution in systemically activating APC via CD40 ligation in the presence of self-reactive T cells.  相似文献   

6.
The synthetic immunomodulator cytotoxic T lymphocyte antigen 4-Ig (CTLA-4-Ig) initiates effects in human monocyte-derived dendritic cells (DC) that rely on immunosuppressive tryptophan catabolism. However, it is unable to induce suppressive properties in DC matured by CD40 engagement. Thus, CD40-driven events may physiologically set human DC free from restraint by regulatory cells expressing surface CTLA-4.  相似文献   

7.
Summary The replication of simian virus 40 DNA and protein synthesis in BSC-1 cells was analyzed in vitro after treatment with 5,6-dihydro-5-azacytidine (DH-5-AzaCR) or 5-azacytidine (5-AzaCR). Results demonstrated that after a 3-h treatment period with 100 μg/ml, DH-5-AzaCR exhibited a 77% inhibition of viral DNA synthesis, whereas 5-AzaCR resulted in a 50% inhibition. Stimulation of DNA synthesis occurred when infected cultures were treated with low doses (0.1 to 0.5 μg/ml) of 5-AzaCR for 3h and after 1 and 2 h of treatment with 100 μg/ml of 5-AzaCR; however, stimulation did not occur with DH-5-AzaCR. DNA synthesized in the presence of either drug demonstrated altered conformations when analyzed on agarose gels; however this alteration was negligible after DH-5-AzaCR treatment, but more pronounced in the presence of 5-AzaCR. Restriction enzyme analysis suggests that DH-5-AzaCR may not be a hypomethylating agent as is 5-AzaCR. Inhibition of total protein synthesis (cellular and viral) was essentially complete 6 h after treatment with DH-5-AzaCR, whereas 5-AzaCR completely inhibited protein synthesis after 3 h. These data indicate that 5-AzaCR does not exhibit a direct dose relationship to the inhibition of DNA synthesis whereas DH-5-AzaCR may show some dose relationship, and that DH-5-AzaCR is a more potent inhibitor of DNA synthesis as compared to 5-AzaCR. This work was supported by grant RR08005, National Institutes of Health, Bethesda, MD. Presented in part before the 87th Annual Meeting of the American Society for Microbiology, Atlanta, GA. April 1–6, 1987.  相似文献   

8.
Injection of agonistic anti-CD40 Abs into mice has been shown to amplify weak CD8 T cell responses to poorly immunogenic compounds and to convert T cell tolerance to T cell priming. In this study we demonstrate that anti-CD40 treatment of C57BL/6 mice, without Ag delivery, led to a marked increase in the number of memory phenotype CD4 and CD8 T cells. Adoptive transfer experiments using CD40-deficient hosts further revealed that the proliferative response of memory T cells, induced by systemic CD40 signaling, was dependent on CD40 expression of host APCs. CD40 ligation in vivo induced vigorous cell division of both memory phenotype and bona fide virus-specific memory CD8 T cells in a partially IL-15-dependent manner. However, only memory phenotype, but not Ag-experienced memory CD8 T cells increased in cell number after anti-CD40 treatment in vivo. Taken together our data show that activation of APC via CD40 induces a marked bystander proliferation of memory phenotype T cells. In addition, we demonstrate that bona fide Ag-experienced memory CD8 T cells respond differently to anti-CD40-induced signals than memory phenotype CD8 T cells.  相似文献   

9.
10.
《Seminars in Virology》1993,4(4):209-215
Poliovirus infection of HeLa cells in culture causes rapid inhibition of host cell protein synthesis, while viral proteins are synthesized at high levels. This inhibition correlates with the inactivation of eukaryotic initiation factor 4F (eIF-4F), by proteolytic cleavage of its γ-subunit, p220. eIF-4F is required for the translation of capped mRNAs. Poliovirus RNA is uncapped and is translated by a cap independent mechanism. The poliovirus protease, 2Apro, is required for p220 cleavage, but induces this cleavage indirectly by activating a host protease that catalyzes p220 cleavage. Eukaryotic initiation factor 3 is also required for p220 cleavage, but its role in the cleavage reaction is unknown.  相似文献   

11.
12.
Phosphatidylinositol transfer proteins (PI-TPs) consist of two isoforms (PI-TPalpha and PI-TPbeta), which differ in phospholipid transfer properties and intracellular localization. Both PI-TP isoforms are substrates for protein kinase C and contain a minor phosphorylation site (Ser166 in PI-TPalpha; Ser165 in PI-TPbeta). Only PI-TPbeta contains a major phosphorylation site at Ser262, which must be phosphorylated for PI-TPbeta to be associated with the Golgi. The PI-TP isoforms are completely conserved between mammals. Although their function is still not clear, their importance follows from knock-out studies, showing that mice lacking PI-TPalpha die soon after birth and that embryonic stems cells lacking PI-TPbeta cannot be generated [Mol. Biol. Cell 13 (2002) 739]. We determined the levels of the PI-TP isoforms in various mouse tissues by immunoblotting. PI-TPalpha is present in all tissues investigated, with highest levels in brain (167 ng/100 microg total protein). The levels of PI-TPbeta are 50-100 times lower than those of PI-TPalpha, with relatively high levels found in liver and brain (1.2 and 1.8 ng/100 microg of total protein, respectively). In contrast to NIH3T3 cells overexpressing PI-TPalpha, cells overexpressing PI-TPbeta (SPIbeta cells) were able to maintain steady-state levels of sphingomyelin in plasma membrane under conditions where this lipid is degraded by exogenous sphingomyelinase. This process of rapid sphingomyelin replenishment is dependent on PI-TPbeta being associated with the Golgi as cells overexpressing a mutant PI-TPbeta in which the major phosphorylation site is replaced (PI-TPbeta(S262A) behave as wild-type NIH3T3 cells. Since the SPIbeta cells display a decreased growth rate (35 h as compared to 21 h for wtNIH3T3 cells), we have investigated the sensitivity of these cells towards UV-induced apoptosis. We have found that the SPIbeta cells, but not the cells overexpressing PI-TPbeta(S262A), are very sensitive. We are currently investigating whether a relationship exists between PI-TPbeta being involved in maintaining plasma membrane sphingomyelin levels and the enhanced sensitivity towards apoptosis.  相似文献   

13.
The effect of Yaba virus preinfection on DNA synthesis in SV40-infected Jinet cells was studied. Time-course synthesis studies were conducted using the incorporation of labeled thymidine. Yaba virus preinfection resulted in the inhibition of SV40 DNA synthesis when the elapsed time between Yaba virus and SV40 infections was three days. This inhibition was demonstrated by hybridization studies and sedimentation analysis. In addition, the usual stimulation of cellular DNA synthesis induced by SV40 infection was inhibited. This inhibition occurred at a time in Yaba virus infection when no cytoplasmic Yaba virus-specific DNA synthesis occurred.  相似文献   

14.
Absence of CD4+ T cell help has been suggested as a mechanism for failed anti-tumor cytotoxic T lymphocytes (CTL) response. We examined the requirement for CD4+ T cells to eliminate an immunogenic murine fibrosarcoma (6132A) inoculated into the peritoneal cavity. Immunocompetent C3H mice eliminated both single and repeat intraperitoneal (IP) inoculums, and developed high frequency of 6132A-specific interferon-γ (IFNγ)-producing CTL in the peritoneal cavity. Adoptive transfer of peritoneal exudate cells (PEC) isolated from control mice, protected SCID mice from challenge with 6132A. In contrast, CD4 depleted mice had diminished ability to eliminate tumor and succumbed to repeat IP challenges. Mice depleted of CD4+ T cells lacked tumor-specific IFNγ producing CTL in the peritoneal cavity. Adoptive transfer of PEC from CD4 depleted mice failed to protect SCID mice from 6132A. However, splenocytes isolated from same CD4 depleted mice prevented tumor growth in SCID mice, suggesting that 6132A-specific CTL response was generated, but was not sustained in the peritoneum. Treating CD4 depleted mice with agonist anti-CD40 antibody, starting on days 3 or 8 after initiating tumor challenge, led to persistence of 6132A-specific IFNγ producing CTL in the peritoneum, and eliminated 6132A tumor. The findings suggest that CTL can be activated in the absence of CD4+ T cells, but CD4+ T cells are required for a persistent CTL response at the tumor site. Exogenous stimulation through CD40 can restore tumor-specific CTL activity to the peritoneum and promote tumor clearance in the absence of CD4+ T cells.Supported in part by grants from Children’s Hospital of Wisconsin Foundation, Society of University Surgeons Foundation, Florence and Marshall Schwid Foundation, Elsa Pardee Foundation, Kathy Duffy Fogarty Fund of the Greater Milwaukee Foundation (JS) and NIH grant RO1-CA-37156 (HS); Andrew Lodge and Ping Yu have contributed equally to this work.  相似文献   

15.
The activity of specific components involved in protein synthesis in 3T3 cells and its SV40-transformed derivative, SV3T3, were examined in a cell-free protein synthetic system, and the results correlated with previous studies, indicating that a decreasing rate of protein synthesis does not accompany the stationary phase of growth. We found that 3T3 and SV3T3 polysome preparations containing endogenous mRNA were equally efficient in supporting cell-free protein synthesis in this system. Further, the net protein synthesis observed was not altered by an increase in the population density of the cellular polysome source. The activity of the aminoacyl-tRNA synthetase enzymes from 3T3 and SV3T3 cells was examined in vitro after isolation by pH 5 precipitation and by ammonium sulfate fractionation. The activity of these preparations from stationary phase 3T3 and nonexponential phase SV3T3 cells was found to be approximately 3 times higher than the activity of fractions from the homologous exponential phase cell. However, at both growth stages, the SV3T3 preparations were 30 to 40 times more active than the 3T3 preparations. These findings may have implications for the different growth properties observed in the two cell types.  相似文献   

16.
In exponentially growing cells of Saccharomyces cerevisiae, cycloheximide stimulated intracellular protein degradation to the same extent as did starvation for required amino acids. By using inhibitors of macromolecular synthesis and temperature-sensitive mutants defective in different steps of RNA and protein synthesis it could be demonstrated, that this stimulation of protein degradation was directly related to the inhibition of protein synthesis per se, but not connected to the cessation of ribosomal RNA synthesis or to the inhibition of cell growth.  相似文献   

17.
We have investigated the effect of interferon on SV40 gene expression late in the lytic cycle, after early functions have been expressed and viral DNA replication has been initiated. Whereas pretreatment with interferon prior to infection reduces the amount of early SV40 RNA, post-infection treatment does not inhibit viral RNA synthesis. Viral 19S and 16S RNA species are found undiminished in quantity and poly(A) content. Despite the apparent normalcy of viral RNA classes, however, there is a marked reduction in the synthesis of their protein products, both T antigen and capsid polypeptides. The association of viral RNA with heavy polyribosomes is strongly reduced. On the other hand, there is no degradation of nonviral polyribosomes and the synthesis of most cellular proteins continues. These experiments demonstrate that late in infection, interferon treatment results in an inhibition of viral mRNA translation.  相似文献   

18.
OX40 costimulates T cells, increases activated T cell longevity, and promotes memory acquisition. T cells activated in vivo with agonist anti-OX40 and ovalbumin have a unique pattern of survival and cell division compared to control cells, but are able to respond to recall Ag equally well. BrdU incorporation shows that early cellular division rates of the anti-OX40-treated and the control groups are similar. Nevertheless, more BrdU(+) Ag-specific T cells accumulate in lymphoid tissue upon anti-OX40 administration. Thus, OX40 ligation does not necessarily lead to increased cell cycle entry, but promotes the accumulation of dividing cells. However, CFSE staining shows that OX40 ligation allows cells to progress through more cellular division cycles, while control cells stall or die. Moreover, OX40 ligation leads to a proportional decrease in apoptotic Ag-specific T cells. Thus, OX40 ligation boosts immunity by promoting an increase in the number cell cycles completed, thereby increasing the life span of Ag-activated CD4 T cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号