首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signaling mediated by the cellular kinase mammalian target of rapamycin (mTOR) activates cap-dependent translation under normal (nonstressed) conditions. However, translation is inhibited by cellular stress responses or rapamycin treatment, which inhibit mTOR kinase activity. We show that during human cytomegalovirus (HCMV) infection, viral protein synthesis and virus production proceed relatively normally when mTOR kinase activity is inhibited due to hypoxic stress or rapamycin treatment. Using rapamycin inhibition of mTOR, we show that HCMV infection induces phosphorylation of two mTOR effectors, eucaryotic initiation factor 4E (eIF4E) binding protein (4E-BP) and eIF4G. The virally induced phosphorylation of eIF4G is both mTOR and phosphatidylinositol 3-kinase (PI3K) independent, whereas the phosphorylation of 4E-BP is mTOR independent, but PI3K dependent. HCMV infection does not induce mTOR-independent phosphorylation of a third mTOR effector, p70S6 kinase (p70S6K). We show that the HCMV-induced phosphorylation of eIF4G and 4E-BP correlates with the association of eIF4E, the cap binding protein, with eIF4G in the eIF4F translation initiation complex. Thus, HCMV induces mechanisms to maintain the integrity of the eIF4F complex even when mTOR signaling is inhibited.  相似文献   

2.
The eukaryotic translation initiation factor 4G (eIF4G) proteins play a critical role in the recruitment of the translational machinery to mRNA. The eIF4Gs are phosphoproteins. However, the location of the phosphorylation sites, how phosphorylation of these proteins is modulated and the identity of the intracellular signaling pathways regulating eIF4G phosphorylation have not been established. In this report, two-dimensional phosphopeptide mapping demonstrates that the phosphorylation state of specific eIF4GI residues is altered by serum and mitogens. Phosphopeptides resolved by this method were mapped to the C-terminal one-third of the protein. Mass spectrometry and mutational analyses identified the serum-stimulated phosphorylation sites in this region as serines 1108, 1148 and 1192. Phosphoinositide-3-kinase (PI3K) inhibitors and rapamycin, an inhibitor of the kinase FRAP/mTOR (FKBP12-rapamycin-associated protein/mammalian target of rapamycin), prevent the serum-induced phosphorylation of these residues. Finally, the phosphorylation state of N-terminally truncated eIF4GI proteins acquires resistance to kinase inhibitor treatment. These data suggest that the kinases phosphorylating serines 1108, 1148 and 1192 are not directly downstream of PI3K and FRAP/mTOR, but that the accessibility of the C-terminus to kinases is modulated by this pathway(s).  相似文献   

3.
TLR-4-mediated signaling is significantly impaired in macrophages from HIV(+) persons, predominantly owing to altered MyD88-dependent pathway signaling caused in part by constitutive activation of PI3K. In this study we assessed in these macrophages if the blunted increase in TLR-4-mediated TNF-α release induced by lipid A (LA) is associated with PI3K-induced upregulation of mammalian target of rapamycin (mTOR) activity. mTOR inhibition with rapamycin enhanced TLR-4-mediated TNF-α release, but suppressed anti-inflammatory IL-10 release. Targeted gene silencing of mTOR in macrophages resulted in LA-induced TNF-α and IL-10 release patterns similar to those induced by rapamycin. Rapamycin restored MyD88/IL-1R-associated kinase interaction in a dose-dependent manner. Targeted gene silencing of MyD88 (short hairpin RNA) and mTOR (RNA interference) inhibition resulted in TLR-4-mediated 70-kDa ribosomal protein S6 kinase activation and enhanced TNF-α release, whereas IL-10 release was inhibited in both silenced and nonsilenced HIV(+) macrophages. Furthermore, mTOR inhibition augmented LA-induced TNF-α release through enhanced and prolonged phosphorylation of ERK1/2 and JNK1/2 MAPK, which was associated with time-dependent MKP-1 destabilization. Taken together, impaired TLR-4-mediated TNF-α release in HIV(+) macrophages is attributable in part to mTOR activation by constitutive PI3K expression in a MyD88-dependent signaling pathway. These changes result in MAPK phosphatase 1 stabilization, which shortens and blunts MAPK activation. mTOR inhibition may serve as a potential therapeutic target to upregulate macrophage innate immune host defense responsiveness in HIV(+) persons.  相似文献   

4.
This study examined how L-leucine affected DNA synthesis and cell cycle regulatory protein expression in cultured primary chicken hepatocytes. L-Leucine promoted DNA synthesis in a dose- and time-dependent manner, with concomitant increases in cyclin D1 and cyclin E expression. Phospholipase C (PLC) and protein kinase C (PKC) mediated the L-leucine-induced increases in [3H]-thymidine incorporation and cyclin D1/CDK4 and cyclin E/CDK2 expression, as U73122 (a PLC inhibitor) or bisindolylmaleimide I (a PKC blocker) inhibited these effects. L-Leucine also increased PKC phosphorylation and intracellular Ca2+ levels. L-Leucine-mediated increases in [3H]-thymidine incorporation and cyclin/CDK expression were sensitive to LY 294002 (PI3K inhibitor), Akt inhibitor, PD 98059 (MEK inhibitor). It was also observed that L-leucine-induced increases of cyclin/CDK expression were inhibited by PI3K siRNA and ERK siRNA; L-leucine increased extracellular signal-regulated kinases 1/2 (ERK1/2) and Akt phosphorylation levels. Bisindolylmaleimide I attenuated L-leucine-induced phosphorylation of ERK1/2 but did not influence Akt phosphorylation, and PI3K siRNA and LY 294002 inhibited L-leucine-induced ERK1/2 phosphorylation, suggesting some cross-talk between the PKC and ERK1/2 or PI3K/Akt and ERK1/2 pathways. L-Leucine also increased the levels of phosphorylated molecular target of rapamycin (mTOR) and two of its targets, ribosomal protein S6 kinase (p70S6K), and 4E binding protein 1 (4E-BP1); furthermore, rapamycin (an mTOR inhibitor) blocked all of the mitogenic effects of L-leucine. In addition, Akt inhibitor blocked L-leucine-induced mTOR phosphorylation. In conclusion, L-leucine stimulated DNA synthesis and promoted cell cycle progression in primary cultured chicken hepatocytes through PKC, ERK1/2, PI3K/Akt, and mTOR.  相似文献   

5.
An important function of growth hormone (GH) is to promote cell and tissue growth, and a key component of these effects is the stimulation of protein synthesis. In this study, we demonstrate that, in H4IIE hepatoma cells, GH acutely activated protein synthesis through signaling via the mammalian target of rapamycin (mTOR) and specifically through the rapamycin-sensitive mTOR complex 1 (mTORC1). GH treatment enhanced the phosphorylation of two targets of mTOR signaling, 4E-BP1 and ribosomal protein S6. Phosphorylation of S6 and 4E-BP1 was maximal at 30-45 min and 10-20 min after GH stimulation, respectively. Both proteins modulate components of the translational machinery. The GH-induced phosphorylation of 4E-BP1 led to its dissociation from eIF4E and increased binding of eIF4E to eIF4G to form (active) eIF4F complexes. The ability of GH to stimulate the phosphorylation of S6 and 4E-BP1 was blocked by rapamycin. GH also led to the dephosphorylation of a third translational component linked to mTORC1, the elongation factor eEF2. Its regulation followed complex biphasic kinetics, both phases of which required mTOR signaling. GH rapidly activated both the MAP kinase (ERK) and PI 3-kinase pathways. Signaling through PI 3-kinase alone was, however, sufficient to activate the downstream mTORC1 pathway. Consistent with this, GH increased the phosphorylation of TSC2, an upstream regulator of mTORC1, at sites that are targets for Akt/PKB. Finally, the activation of overall protein synthesis by GH in H4IIE cells was essentially completely inhibited by wortmannin or rapamycin. These results demonstrate for the first time that mTORC1 plays a major role in the rapid activation of protein synthesis by GH.  相似文献   

6.
7.
We previously demonstrated that Mycobacterium tuberculosis (M. tbc)-induced interleukin (IL)-12 expression is negatively regulated by the phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) 1/2 pathways in human monocyte-derived macrophages (MDMs). To extend these studies, we examined the nature of the involvement of toll-like receptors (TLRs) and intracellular signalling pathways downstream from PI3K in M. tbc-induced IL-23 expression in human MDMs. M. tbc-induced Akt activation and IL-23 expression were essentially dependent on TLR2. Blockade of the mammalian targets of rapamycin (mTOR)/70 kDa ribosomal S6 kinase 1 (S6K1) pathway by the specific inhibitor rapamycin greatly enhanced M. tbc-induced IL-12/IL-23 p40 (p40) and IL-23 p19 (p19) mRNA and IL-23 protein expression. In sharp contrast, p38 mitogen-activated protein kinase (MAPK) inhibition abrogated the p40 and p19 mRNA and IL-23 protein expression induced by M. tbc. Furthermore, the inhibition of PI3K-Akt, but not ERK 1/2 pathway, attenuated M. tbc-induced S6K1 phosphorylation, whereas PI3K inhibition enhanced p38 phosphorylation and apoptosis signal-regulating kinase 1 activity during exposure to M. tbc. Although the negative or positive regulation of IL-23 was not reversed by neutralization of IL-10, it was significantly modulated by blocking TLR2. Collectively, these findings provide new insight into the homeostatic mechanism controlling type 1 immune responses during mycobacterial infection involving the intracellular network of PI3K, S6K1, ERK 1/2 and p38 MAPK pathways in a TLR2-dependent manner.  相似文献   

8.
9.
Thyroid hormones affect cardiac growth and phenotype; however, the mechanisms by which the hormones induce cardiomyocyte hypertrophy remain uncharacterized. Tri-iodo-L-thyronine (T3) treatment of cultured cardiomyocytes for 24 h resulted in a 41 +/- 5% (p < 0.001) increase in [(3)H]leucine incorporation into total cellular protein. This response was abrogated by the phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin. Co-immunoprecipitation studies showed a direct interaction of cytosol-localized thyroid hormone receptor TRalpha1 and the p85alpha subunit of PI3K. T3 treatment rapidly increased PI3K activity by 52 +/- 3% (p < 0.005), which resulted in increased phosphorylation of downstream kinases Akt and mammalian target of rapamycin (mTOR). This effect was abrogated by pretreatment with wortmannin or LY294002. Phosphorylation of p70(S6K), a known target of mTOR, occurred rapidly following T3 treatment and was inhibited by rapamycin and wortmannin. In contrast, phosphorylation of the p85 variant of S6K in response to T3 was not blocked by LY294002, wortmannin, or rapamycin, thus supporting a T3-activated pathway independent of PI3K and mTOR. 40 S ribosomal protein S6, a target of p70(S6K), and 4E-BP1, a target of mTOR, were both phosphorylated within 15-25 min of T3 treatment and could be inhibited by wortmannin and rapamycin. Thus, rapid T3-mediated activation of PI3K by cytosolic TRalpha1 and subsequent activation of the Akt-mTOR-S6K signaling pathway may underlie one of the mechanisms by which thyroid hormone regulates physiological cardiac growth.  相似文献   

10.

Background

Minocycline, a second-generation tetracycline antibiotic, has potential activity for the treatment of several neurodegenerative and psychiatric disorders. However, its mechanisms of action remain to be determined.

Methodology/Principal Findings

We found that minocycline, but not tetracycline, significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells, in a concentration dependent manner. Furthermore, we found that the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP3) receptors and several common signaling molecules (PLC-γ, PI3K, Akt, p38 MAPK, c-Jun N-terminal kinase (JNK), mammalian target of rapamycin (mTOR), and Ras/Raf/ERK/MAPK pathways) might be involved in the active mechanism of minocycline. Moreover, we found that a marked increase of the eukaryotic translation initiation factor eIF4AI protein by minocycline, but not tetracycline, might be involved in the active mechanism for NGF-induced neurite outgrowth.

Conclusions/Significance

These findings suggest that eIF4AI might play a role in the novel mechanism of minocycline. Therefore, agents that can increase eIF4AI protein would be novel therapeutic drugs for certain neurodegenerative and psychiatric diseases.  相似文献   

11.
12.
Cyclooxygenase (COX) enzymes mediate the synthesis of proinflammatory prostaglandin (PG) species from cellular arachidonic acid. COX/PGs have been implicated in skeletal muscle growth/regeneration; however, the mechanisms by which PGs influence skeletal muscle adaptation are poorly understood. The present study aimed to investigate PGF(2α) signaling and its role in skeletal myotube hypertrophy. PGF(2α) or the FP receptor agonist fluprostenol increased C2C12 myotube diameter. This effect was abolished by the FP receptor antagonist AL8810 and mammalian target of rapamycin (mTOR) inhibition. PGF(2α) stimulated time- and dose-dependent increases in the phosphorylation of extracellular receptor kinase (ERK)1/2 (Thr202/Tyr204), p70S6 kinase (p70S6K) (Thr389 and Thr421/Ser424), and eukaryotic initiation factor 4G (eIF4G) (Ser1108) without influencing Akt (Ser473). Pretreatment with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 and the ERK inhibitor PD98059 blocked F prostanoid receptor signaling responses, whereas rapamycin blocked heightened p70S6K/eIF4G phosphorylation without influencing ERK1/2 phosphorylation. These data suggest that activation of the F prostanoid receptor is coupled to C2C12 myotube growth and intracellular signaling via a PI3K/ERK/mTOR-dependent pathway.  相似文献   

13.
In contrast to cell types in which exposure to hypoxia causes a general reduction of metabolic activity, a remarkable feature of pulmonary artery adventitial fibroblasts is their ability to proliferate in response to hypoxia. Previous studies have suggested that ERK1/2, phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) are activated by hypoxia and play a role in a variety of cell responses. However, the pathways involved in mediating hypoxia-induced proliferation are largely unknown. Using pharmacological inhibitors, we established that PI3K-Akt, mTOR-p70 ribosomal protein S6 kinase (p70S6K), and EKR1/2 signaling pathways play a critical role in hypoxia-induced adventitial fibroblast proliferation. We found that exposure of serum-starved fibroblasts to 3% O2 resulted in a time-dependent activation of PI3K and transient phosphorylation of Akt. However, activation of PI3K was not required for activation of ERK1/2, implying a parallel involvement of these pathways in the proliferative response of fibroblasts to hypoxia. We found that hypoxia induced significant increases in mTOR, p70S6K, 4E-BP1, and S6 ribosomal protein phosphorylation, as well as dramatic increases in p70S6K activity. The activation of p70S6K/S6 pathway was sensitive to inhibition by rapamycin and LY294002, indicating that mTOR and PI3K/Akt are upstream signaling regulators. However, the magnitude of hypoxia-induced p70S6K activity and phosphorylation suggests involvement of additional signaling pathways. Thus our data demonstrate that hypoxia-induced adventitial fibroblast proliferation requires activation and interaction of PI3K, Akt, mTOR, p70S6K, and ERK1/2 and provide evidence for hypoxic regulation of protein translational pathways in cells exhibiting the capability to proliferate under hypoxic conditions.  相似文献   

14.
Mature dendritic cells (DCs) are central to the development of optimal T cell immune responses. CD40 ligand (CD40L, CD154) is one of the most potent maturation stimuli for immature DCs. We studied the role of three signaling pathways, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and phosphoinositide-3-OH kinase (PI3K), in CD40L-induced monocyte-derived DC activation, survival, and expansion of virus-specific CD8(+) T cell responses. p38 MAPK pathway was critical for CD40L-mediated up-regulation of CD83, a marker of DC maturation. CD40L-induced monocyte-derived DC IL-12 production was mediated by both the p38 MAPK and PI3K pathways. CD40L-mediated DC survival was mostly mediated by the PI3K pathway, with smaller contributions by p38 MAPK and ERK pathways. Finally, the p38 MAPK pathway was most important in mediating CD40L-stimulated DCs to induce strong allogeneic responses as well as expanding virus-specific memory CD8(+) T cell responses. Thus, although the p38 MAPK, PI3K, and ERK pathways independently affect various parameters of DC maturation induced by CD40L, the p38 MAPK pathway within CD40L-conditioned DCs is the most important pathway to maximally elicit T cell immune responses. This pathway should be exploited in vivo to either completely suppress or enhance CD8(+) T cell immune responses.  相似文献   

15.
MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis   总被引:1,自引:0,他引:1  
Cadmium (Cd) may be accumulated in human body through long-term exposure to Cd-polluted environment, resulting in neurodegeneration and other diseases. To study the mechanism of Cd-induced neurodegeneration, PC12 and SH-SY5Y cells were exposed to Cd. We observed that Cd-induced apoptosis in the cells in a time- and concentration-dependent manner. Cd rapidly activated the mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase 1/2 (Erk1/2), c -Jun N-terminal kinase (JNK) and p38. Inhibition of Erk1/2 and JNK, but not p38, partially protected the cells from Cd-induced apoptosis. Consistently, over-expression of dominant negative c- Jun or down-regulation of Erk1/2, but not p38 MAPK, partially prevented Cd-induced apoptosis. To our surprise, Cd also activated mammalian target of rapamycin (mTOR)-mediated signaling pathways. Treatment with rapamycin, an mTOR inhibitor, blocked Cd-induced phosphorylation of S6K1 and eukaryotic initiation factor 4E binding protein 1, and markedly inhibited Cd-induced apoptosis. Down-regulation of mTOR by RNA interference also in part, rescued cells from Cd-induced death. These findings indicate that activation of the signaling network of MAPK and mTOR is associated with Cd-induced neuronal apoptosis. Our results strongly suggest that inhibitors of MAPK and mTOR may have a potential for prevention of Cd-induced neurodegeneration.  相似文献   

16.
Mollugin, a bioactive phytochemical isolated from Rubia cordifolia L., has shown preclinical anticancer efficacy in various cancer models. However the effects of mollugin in regulating cancer cell survival and death remains undefined. In the present study we found that mollugin exhibited cytotoxicity on various cancer models. The suppression of cell viability was due to the induction of mitochondria apoptosis. In addition, the presence of autophagic hallmarks was observed in mollugin-treated cells. Notably, blockade of autophagy by a chemical inhibitor or RNA interference enhanced the cytotoxicity of mollugin. Further experiments demonstrated that phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin/p70S6 kinase (PI3K/AKT/mTOR/p70S6K) and extracellular regulated protein kinases (ERK) signaling pathways participated in mollugin-induced autophagy and apoptosis. Together, these findings support further studies of mollugin as candidate for treatment of human cancer cells.  相似文献   

17.
Extracellular nucleotides are increasingly recognized as important regulators of growth in a variety of cell types. Recent studies have demonstrated that extracellular ATP is a potent inducer of fibroblast growth acting, at least in part, through an ERK1/2-dependent signaling pathway. However, the contributions of additional signaling pathways to extracellular ATP-mediated cell proliferation have not been defined. By using both pharmacologic and genetic approaches, we found that in addition to ERK1/2, phosphatidylinositol 3-kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and p70 S6K-dependent signaling pathways are required for ATP-induced proliferation of adventitial fibroblasts. We found that extracellular ATP acting in part through G(i) proteins increased PI3K activity in a time-dependent manner and transient phosphorylation of Akt. This PI3K pathway is not involved in ATP-induced activation of ERK1/2, implying activation of independent parallel signaling pathways by ATP. Extracellular ATP induced dramatic increases in mTOR and p70 S6K phosphorylation. This activation of the mTOR/p70 S6 kinase (p70 S6K) pathway in response to ATP is because of independent contributions of PI3K/Akt and ERK1/2 pathways, which converge on the level of p70 S6K. ATP-dependent activation of mTOR and p70 S6K also requires additional signaling inputs perhaps from pathways operating through Galpha or Gbetagamma subunits. Collectively, our data demonstrate that ATP-induced adventitial fibroblast proliferation requires activation and interaction of multiple signaling pathways such as PI3K, Akt, mTOR, p70 S6K, and ERK1/2 and provide evidence for purinergic regulation of the protein translational pathways related to cell proliferation.  相似文献   

18.
Series of purine and pyrazolo[3,4-d]pyrimidine inhibitors of phosphatidylinositol-3-kinases (PI3K) have been prepared. The optimized purine inhibitors show good potency in a PI3K p110α (PI3K-α) fluorescence polarization assay with good selectivity versus PI3K p110γ (PI3K-γ) and the mammalian target of rapamycin (mTOR). The related pyrazolo[3,4-d]pyrimidines show potent PI3K-α and mTOR inhibition with good selectivity versus PI3K-γ. Representative compounds showed activity in a cellular proliferation assay against Caco-2 colorectal, LoVo colorectal and PC3MM2 prostate adenocarcinoma cancer cells. Signaling through the PI3K pathway was confirmed via inhibition of phospho-AKT in MDA-361 cells.  相似文献   

19.
The initiation factor eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in initiating translation of mRNAs, including those encoding oncogenic proteins. Therefore, eIF4E is considered a survival protein involved in cell cycle progression, cell transformation, and apoptotic resistance. Phosphorylation of eIF4E (usually at Ser209) increases its binding affinity for the cap of mRNA and may also favor its entry into initiation complexes. Mammalian target of rapamycin (mTOR) inhibitors suppress cap-dependent translation through inhibition of the phosphorylation of eIF4E-binding protein 1. Paradoxically, we have shown that inhibition of mTOR signaling increases eIF4E phosphorylation in human cancer cells. In this study, we focused on revealing the mechanism by which mTOR inhibition increases eIF4E phosphorylation. Silencing of either mTOR or raptor could mimic mTOR inhibitors' effects to increase eIF4E phosphorylation. Moreover, knockdown of mTOR, but not rictor or p70S6K, abrogated rapamycin's ability to increase eIF4E phosphorylation. These results indicate that mTOR inhibitor-induced eIF4E phosphorylation is secondary to mTOR/raptor inhibition and independent of p70S6K. Importantly, mTOR inhibitors lost their ability to increase eIF4E phosphorylation only in cells where both Mnk1 and Mnk2 were knocked out, indicating that mTOR inhibitors increase eIF4E phosphorylation through a Mnk-dependent mechanism. Given that mTOR inhibitors failed to increase Mnk and eIF4E phosphorylation in phosphatidylinositol 3-kinase (PI3K)-deficient cells, we conclude that mTOR inhibition increases eIF4E phosphorylation through a PI3K-dependent and Mnk-mediated mechanism. In addition, we also suggest an effective therapeutic strategy for enhancing mTOR-targeted cancer therapy by cotargeting mTOR signaling and Mnk/eIF4E phosphorylation.  相似文献   

20.
p70S6 kinase (S6K1) plays a pivotal role in hypertrophic cardiac growth via ribosomal biogenesis. In pressure-overloaded myocardium, we show S6K1 activation accompanied by activation of protein kinase C (PKC), c-Raf, and mitogen-activated protein kinases (MAPKs). To explore the importance of the c-Raf/MAPK kinase (MEK)/MAPK pathway, we stimulated adult feline cardiomyocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA), insulin, or forskolin to activate PKC, phosphatidylinositol-3-OH kinase, or protein kinase A (PKA), respectively. These treatments resulted in S6K1 activation with Thr-389 phosphorylation as well as mammalian target of rapamycin (mTOR) and S6 protein phosphorylation. Thr-421/Ser-424 phosphorylation of S6K1 was observed predominantly in TPA-treated cells. Dominant negative c-Raf expression or a MEK1/2 inhibitor (U0126) treatment showed a profound blocking effect only on the TPA-stimulated phosphorylation of S6K1 and mTOR. Whereas p38 MAPK inhibitors exhibited only partial effect, MAPK-phosphatase-3 expression significantly blocked the TPA-stimulated S6K1 and mTOR phosphorylation. Inhibition of mTOR with rapamycin blocked the Thr-389 but not the Thr-421/Ser-424 phosphorylation of S6K1. Therefore, during PKC activation, the c-Raf/MEK/extracellular signal-regulated kinase-1/2 (ERK1/2) pathway mediates both the Thr-421/Ser-424 and the Thr-389 phosphorylation in an mTOR-independent and -dependent manner, respectively. Together, our in vivo and in vitro studies indicate that the PKC/c-Raf/MEK/ERK pathway plays a major role in the S6K1 activation in hypertrophic cardiac growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号