首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Siberian hamsters (Phodopus sungorus) exhibit reproductive and immunological responses to photoperiod. Short (<10-h light/day) days induce gonadal atrophy, increase leukocyte concentrations, and attenuate thermoregulatory and behavioral responses to infection. Whereas hamster reproductive responses to photoperiod are dependent on pineal melatonin secretion, the role of the pineal in short-day induced changes in immune function is not fully understood. To examine this, adult hamsters were pinealectomized (PINx) or sham-PINx, and transferred to short days (9-h light/day; SD) or kept in their natal long-day (15-h light/day; LD) photoperiod. Intact and PINx hamsters housed in LD maintained large testes over the next 12 weeks; sham-PINx hamsters exhibited gonadal regression in SD, and PINx abolished this effect. Among pineal-intact hamsters, blood samples revealed increases in leukocyte, lymphocyte, CD62L+ lymphocyte, and T cell counts in SD relative to LD; PINx did not affect leukocyte numbers in LD hamsters, but abolished the SD increase in these measures. Hamsters were then treated with bacterial lipopolysaccharide (LPS), which induced thermoregulatory (fever), behavioral (anorexia, reductions in nest building), and somatic (weight loss) sickness responses in all groups. Among pineal-intact hamsters, febrile and behavioral responses to LPS were attenuated in SD relative to LD. PINx did not affect sickness responses to LPS in LD hamsters, but abolished the ameliorating effects of SD on behavioral responses to LPS. Surprisingly, PINx failed to abolish the effect of SD on fever. In common with the reproductive system, PINx induces the LD phenotype in most aspects of the immune system. The pineal gland is required for photoperiodic regulation of circulating leukocytes and neural-immune interactions that mediate select aspects of sickness behaviors.  相似文献   

2.
Siberian hamsters (Phodopus sungorus) exhibit changes in reproductive and immune function in response to seasonal variations in day length. Exposure to short days induces gonadal regression and inhibits testosterone secretion. In parallel, short days enhance immune function: increasing leukocyte numbers and attenuating cytokine and behavioral responses to infection. We examined whether photoperiodic changes in leukocyte phenotypes and sickness behaviors are dependent on concurrent photoperiodic changes in gonadal function. Male hamsters were gonadectomized or sham-gonadectomized and either exposed to short days (9 h light/day; SD) or kept in their natal long-day (15 h light/day; LD) photoperiod for 10-13 wk. Blood samples were obtained for leukocyte enumeration, and hamsters were challenged with bacterial LPS, which induced behavioral (anorexia, reductions in nest building) and somatic (weight loss) sickness responses. Among gonad-intact hamsters, exposure to SD increased total and CD62L+ lymphocytes and CD3+ T lymphocytes in blood and significantly attenuated LPS-induced sickness responses. Independent of photoperiod, castration alone increased total and CD62L+ lymphocyte and CD3+ T lymphocyte numbers and attenuated somatic and anorexic sickness responses. Among castrated hamsters, SD exposure increased lymphocyte numbers and suppressed sickness behaviors. In castrated hamsters, the magnitude of most immunological effects of SD were diminished relative to those evident in gonad-intact hamsters. The SD phenotype in several measures of immunity can be instated via elimination of gonadal hormones alone; however, photoperiodic effects on immune function persist even in castrated hamsters. Thus, photoperiod affects the immune system and neural-immune interactions underlying sickness behaviors via gonadal hormone-dependent and -independent mechanisms.  相似文献   

3.
Defense against pathogens is a critical component of comparative and ecological biology. However, pathogen recognition, a process necessary for the facilitation of systemic immune response, remains understudied in a comparative context, yet could provide insight into how the immune system interacts with pathogens in variable environments. We examined pathogen recognition by macrophages in relation to an ecological variable, day length, in Siberian hamsters (Phodopus sungorus). Because peritoneal macrophages collected in long, summer-like day lengths are more responsive to a lipopolysaccharide (LPS) challenge compared to macrophages collected during short, winter-like day lengths, we hypothesized that these functional differences are mediated by variation in pathogen recognition, which occurs through binding to Toll-like receptors (TLRs). We predicted that expression of TLR2 and 4, the receptors that bind and respond specifically to LPS, would be upregulated in long vs. short days, and that expression of these receptors would reflect macrophage responsiveness to LPS. Macrophages collected during long days were again more responsive to LPS challenge compared to short-day macrophages; however, TLR2 and TLR4 expression was similar between photoperiods and were unrelated to our measure of macrophage responsiveness suggesting that other downstream intracellular mechanisms may be responsible for photoperiod-based variation in macrophage responsiveness in this species.  相似文献   

4.
Environmental experiences during development provide animals with important information about future conditions. Siberian hamsters are photoperiodic rodents that dramatically adjust their physiology and behavior to adapt to seasonal changes. For example, during short winter-like days, hamsters enhance some components of immune function putatively to cope with increasing environmental challenges. Furthermore, early life stress alters the developmental course of the immune system. Overall, immune function is typically suppressed in response to chronic stress, but responses vary depending on the type of stress and components of immune function assessed. This led us to hypothesize that delayed-type hypersensitivity (DTH), an antigen-specific, cell-mediated immune response, would be differentially modulated in hamsters that underwent early life maternal separation (MS) in either short or long photoperiods. At birth, hamsters were assigned to either short (SD; 8 h light/day) or long (LD; 16 h light/day) photoperiods and either daily 3 h MS, daily 15-min brief maternal separation (BMS), or no manipulation from postnatal day 2 through 14. In adulthood DTH was assessed. Hamsters reared in short days enhanced DTH responses. MS and BMS attenuated DTH responses in both short and long days. However, BMS long-day female hamsters did not suppress pinna swelling, suggesting a protective effect of female sex steroids on immune function. As is typical in short days, reproductive tissue was regressed. Reproductive tissue mass was also decreased in long-day MS female hamsters. Furthermore, MS altered photoperiod-induced changes in body mass. Taken together, these findings suggest that manipulations of early life mother-pup interactions in Siberian hamsters result in physiological changes and suppressed cell-mediated immunity.  相似文献   

5.
Differential allocation of energy to reproduction versus host defense is assumed to drive the seasonal antiphase relation between peak reproductive function and immunocompetence; however, evidence supporting this assumption is only correlational. These experiments tested whether photoperiod affects immune responses to antigens in peripubertal Siberian hamsters, whether such activation of the immune system exacts energetic and reproductive costs, and whether such costs vary seasonally. Male Siberian hamsters were raised from birth in long (LD) or short days (SD), which respectively initiate or inhibit the onset of puberty. To elicit a specific immune response, hamsters were injected with a novel antigen (keyhole limpet hemocyanin [KLH]) as juveniles. Reproductive development was attenuated and body temperature was elevated in LD hamsters relative to saline-injected control animals. In contrast, KLH treatments affected neither thermoregulation nor reproductive development in photoinhibited SD hamsters. In experiment 2, juvenile male hamsters were challenged with bacterial lipopolysaccharide (LPS) in order to elicit an innate immune response. Febrile and anorexic responses to LPS were greater in reproductively stimulated LD hamsters relative to reproductively inhibited SD hamsters. LPS treatments attenuated somatic and testicular development in LD hamsters, but did not significantly affect circulating testosterone concentrations. In contrast, LPS treatments were without effect on somatic and reproductive development in SD hamsters. These experiments indicate that photoperiod affects antigen-specific antibody production, febrile responses to LPS, and sickness behaviors in juvenile Siberian hamsters, and that peripubertal activation of the immune system exacts energetic and metabolic costs that can diminish the magnitude of somatic and reproductive maturation in LD. The data also underscore the importance of seasonally dependent life history factors in assessing physiological tradeoffs.  相似文献   

6.
Exposing vertebrates to pathogenic organisms or inflammatory stimuli, such as bacterial lipopolysaccharide (LPS), activates the immune system and triggers the acute phase response. This response involves fever, alterations in neuroendocrine circuits, such as hypothalamo-pituitary-adrenal (HPA) and -gonadal (HPG) axes, and stereotypical sickness behaviors that include lethargy, anorexia, adipsia, and a disinterest in social activities. We investigated the hormonal, behavioral, and thermoregulatory effects of acute LPS treatment in a seasonally breeding songbird, the white-crowned sparrow (Zonotrichia leucophrys gambelii) using laboratory and field experiments. Captive male and female sparrows were housed on short (8L:16D) or long (20L:4D) day lengths and injected subcutaneously with LPS or saline (control). LPS treatment activated the HPA axis, causing a rapid increase in plasma corticosterone titers over 24 h compared to controls. Suppression of the HPG axis occurred in long-day LPS birds as measured by a decline in luteinizing hormone levels. Instead of a rise in body temperature, LPS-injected birds experienced short-term hypothermia compared to controls. Birds treated with LPS decreased activity and reduced food and water intake, resulting in weight loss. LPS males on long days experienced more weight loss than LPS males on short days, but this seasonal effect was not observed in females. These results paralleled seasonal differences in body condition, suggesting that modulation of the acute phase response is linked to energy reserves. In free-living males, LPS treatment decreased song and several measures of territorial aggression. These studies highlight immune-endocrine-behavior interrelationships that may proximately mediate life-history tradeoffs between reproduction and defense against pathogens.  相似文献   

7.
Short day lengths attenuate the symptoms of infection in Siberian hamsters   总被引:6,自引:0,他引:6  
Symptoms of infection, such as fever, anorexia and lethargy, are ubiquitous among vertebrates. Rather than nonspecific manifestations of illness, these responses are organized, adaptive strategies that are often critical to host survival. During times of energetic shortage such as winter, however, it may be detrimental for individuals to prolong energetically demanding symptoms such as fever. Individuals may adjust their immune responses prior to winter by using day length to anticipate energetically-demanding conditions. If the expression of sickness behaviours is constrained by energy availability, then cytokine production, fever, and anorexia should be attenuated in infected Siberian hamsters housed under simulated winter photoperiods. We housed hamsters in either long (14 L : 10 D) or short (10 L : 14 D) day lengths and assessed cytokines, anorexia and fever following injections of lipopolysaccharide (LPS). Short days attenuated the response to lipopolysaccharide, by decreasing the production of interleukin (IL)-6 and IL-1beta, and diminishing the duration of fever and anorexia. Short-day exposure in hamsters also decreased the ingestion of dietary iron, a nutrient vital to bacterial replication. Taken together, short day lengths attenuated the symptoms of infection, presumably to optimize energy expenditure and survival outcome.  相似文献   

8.
Environmental experiences during development provide animals with important information about future conditions. Siberian hamsters are photoperiodic rodents that dramatically adjust their physiology and behavior to adapt to seasonal changes. For example, during short winter-like days, hamsters enhance some components of immune function putatively to cope with increasing environmental challenges. Furthermore, early life stress alters the developmental course of the immune system. Overall, immune function is typically suppressed in response to chronic stress, but responses vary depending on the type of stress and components of immune function assessed. This led us to hypothesize that delayed-type hypersensitivity (DTH), an antigen-specific, cell-mediated immune response, would be differentially modulated in hamsters that underwent early life maternal separation (MS) in either short or long photoperiods. At birth, hamsters were assigned to either short (SD; 8?h light/day) or long (LD; 16?h light/day) photoperiods and either daily 3?h MS, daily 15-min brief maternal separation (BMS), or no manipulation from postnatal day 2 through 14. In adulthood DTH was assessed. Hamsters reared in short days enhanced DTH responses. MS and BMS attenuated DTH responses in both short and long days. However, BMS long-day female hamsters did not suppress pinna swelling, suggesting a protective effect of female sex steroids on immune function. As is typical in short days, reproductive tissue was regressed. Reproductive tissue mass was also decreased in long-day MS female hamsters. Furthermore, MS altered photoperiod-induced changes in body mass. Taken together, these findings suggest that manipulations of early life mother-pup interactions in Siberian hamsters result in physiological changes and suppressed cell-mediated immunity. (Author correspondence: ).  相似文献   

9.
During winter, increased thermoregulatory demands coincide with limited food availability necessitating physiological tradeoffs among expensive physiological processes resulting in seasonal breeding among small mammals. In the laboratory, short winter-like day lengths induce regression of the reproductive tract, but also enhance many aspects of immune function. It remains unspecified the extent to which bolstered immune responses in short days represent enhanced immune function per se compared to long days or represents energetic disinhibition mediated by the regression of the reproductive tract. Cohabitation of male Siberian hamsters with intact female conspecifics can block short-day reproductive regression. We sought to determine whether female cohabitation could also block the enhanced immune function associated with short days. Adult male Siberian hamsters were housed in long or short day lengths in one of three housing conditions: (1) single-housed, (2) housed with a same sex littermate, or (3) housed with an ovariectomized female. Delayed-type hypersensitivity (DTH) responses were assessed after 8 weeks of photoperiod treatment. Housing with an ovariectomized female was not sufficient to block short-day reproductive regression, but prevented short-day enhancement of DTH responses. Housing with a male littermate did not alter reproductive or immune responses in either photoperiod. These data suggest that short day enhancement of immune function is independent of photoperiod-mediated changes in the reproductive system.  相似文献   

10.
Siberian hamsters exhibit seasonal, photoperiod influenced cycles of reproductive activity, body size, pelage characteristics, and thermoregulatory behavior. Laboratory populations generally exhibit inter-individual variability in expression of photoperiod responsiveness, with a subset of individuals that fail to show the species typical responses to short photoperiod. This variability is partly explained by a genetic component, as it has been possible to increase the number of short-day nonresponders by artificial selection. Responsiveness to short photoperiod is also substantially influenced by photoperiod history in this species; hamsters that have been raised under long (16L) or very long (18L) day lengths are less likely to exhibit winter-type responses to short days as compared to hamsters raised under an intermediate (14L) day length. In the present experiment, we examined effects of age and early photoperiod history in a strain of Siberian hamsters that had been selected for short-day nonresponsiveness. Hamsters transferred into short photoperiod on the day of birth were uniform in exhibiting winter-type responses. However, hamsters raised until 25 days of age in either continuous illumination or in 16L exhibited variation in responsiveness when subsequently moved into short photoperiod. We conclude that virtually all hamsters of the short-day nonresponsive strain are born responsive to short days. Subsequent development of resistance to potential short day effects is dependent on age and/or photoperiod history.  相似文献   

11.
Pathogens may induce different immune responses in hosts contingent on pathogen characteristics, host characteristics, or interactions between the two. We investigated whether the broadly effective acute-phase response (APR), a whole body immune response that occurs in response to constitutive immune receptor activation and includes fever, secretion of immune peptides, and sickness behaviors such as anorexia and lethargy, varies with pathogen identity in the house sparrow (Passer domesticus). Birds were challenged with a subcutaneous injection of either a glucan at 0.7 mg/kg (to simulate fungal infection), a synthetic double-stranded RNA at 25 mg/kg (to simulate viral infection), or LPS at 1 mg/kg (to simulate a gram-negative bacterial infection), and then body mass, core body temperature changes, sickness behaviors, and secretion of an acute-phase protein, haptoglobin, were compared. Despite using what are moderate-to-high pyrogen doses for other vertebrates, only house sparrows challenged with LPS showed measurable APRs. Febrile, behavioral, and physiological responses to fungal and viral mimetics had minimal effects.  相似文献   

12.
Many nontropical species undergo physiological and behavioral adaptations in response to seasonal changes in photoperiod, or day length. In most rodent species, short winter photoperiods reduce testosterone concentrations, which provoke gonadal regression and reduce testosterone-dependent behaviors such as mating and aggression. Seasonally-breeding Siberian hamsters, however, are paradoxically more aggressive in short-days, despite much reduced reproductive activity and testosterone concentrations. Nitric oxide (NO) signaling has been proposed as part of an alternate mechanism underlying this phenomenon. A reduction in neuronal nitric oxide synthase (nNOS), the enzyme responsible for synthesizing NO in the brain, is associated with increased aggression in male short-day hamsters. In the present study, we hypothesized that pharmacological inhibition of nNOS would increase aggressive behavior in long days, but not in short days because nNOS is already reduced. Adult male Siberian hamsters were housed in either long (LD 16:8h) or short (LD 8:16h) photoperiods for 8weeks, then treated with either the selective nNOS inhibitor, 3-bromo-7-nitroindazole (3BrN) or oil vehicle, and subsequently tested for aggression in a resident-intruder test. Treatment with 3BrN increased attack frequency and duration in long days, but had no effect in short days. Short days also reduced testosterone concentrations, without any effect of treatment. These data provide further evidence linking reduced nNOS to elevated short-day aggression and support a role for NO signaling in this phenomenon.  相似文献   

13.
SYNOPSIS. Winter is energetically-demanding; thermoregulatorydemands increase when food availability usually decreases. Physiologicaland behavioral adaptations, including termination of breeding,have evolved among nontropical animals to cope with winter energyshortages. Presumably, selection for mechanisms that permitphysiological and behavioral anticipation of seasonal ambientchanges have led to current seasonal breeding patterns for manypopulations. Energetically—challenging winter conditionscan directly induce death via hypothermia, starvation, or shock;surviving these demanding conditions likely evokes significantstress responses. The stress of coping with energetically-demandingconditions may increase adrenocortical steroid levels to theextent that immune function is compromised. Individuals wouldenjoy a survival advantage if seasonally-recurring stressorscould be anticipated and countered by shunting energy reservesto bolster immune function. The primary environmental cue thatpermits physiological anticipation of season is daily photoperiod,a cue that is mediated by melatonin. However, other environmentalfactors, such as low food availability and ambient temperatures,may interact with photoperiod to affect immune function anddisease processes. Laboratory studies of seasonal changes inmammalian immune function consistently report that immune functionis enhanced in short day lengths. Prolonged melatonin treatmentmimics short days, and also enhances immune function in rodents.In sum, melatonin may be part of an integrative system to coordinatereproductive, immunologic, and other physiological processesto cope successfully with energetic stressors during winter.Social factors influence immune function and changes in socialinteractions may also contribute to seasonal changes in immunefunction. The mechanisms by which social factors are transducedinto immune responses are largely unspecified. In order to understandthe optimization of immune function it is necessary to understandthe interaction of factors, on both mechanistic and functionallevels, that affect immunity.  相似文献   

14.
昆虫天然免疫反应分子机制研究进展   总被引:4,自引:0,他引:4  
张明明  初源  赵章武  安春菊 《昆虫学报》2012,55(10):1221-1229
昆虫体内缺乏高等脊椎动物所具有的获得性免疫系统, 只能依赖发达的天然免疫系统抵抗细菌、 真菌、 病毒等外源病原物的侵染。本文概括了昆虫天然免疫反应发生和作用的分子机制相关进展, 重点阐述了重要免疫相关因子在昆虫天然免疫反应中的功能和作用机制。昆虫天然免疫反应分为体液免疫和细胞免疫两种, 二者共同作用完成对病原物的吞噬 (phagocytosis)、 集结 (nodulation)、 包囊 (encapsulation)、 凝结 (coagulation)和黑化(melanization)等。当昆虫受到外界病原物的侵染时, 首先通过体内的模式识别蛋白(pattern recognition proteins/receptor, PRPs)识别并结合病原物表面特有的模式分子(pathogen-associated molecular pattern, PAMPs), 继而一系列包括丝氨酸蛋白酶和丝氨酸蛋白酶抑制剂在内的级联激活反应被激活和调控, 产生抗菌肽、 黑色素等免疫效应分子, 清除或杀灭外源物。抗菌肽是一类小分子量的阳离子肽, 具有广谱抗菌活性, 针对不同类型的病原物, 抗菌肽的产生机制也不尽相同。昆虫体内存在着两种信号转导途径调节抗菌肽的产生: 一是由真菌和大部分革兰氏阳性菌激活的Toll途径; 二是由革兰氏阴性菌激活的Imd途径(immune deficiency pathway)。这两个途径通过激活不同转录因子调控不同抗菌肽基因的表达参与昆虫体内的天然免疫反应。  相似文献   

15.
16.
Seasonal changes in day length enhance or suppress components of immune function in individuals of several mammalian species. Siberian hamsters (Phodopus sungorus) exhibit multiple changes in neuroendocrine, reproductive, and immune function after exposure to short days. The manner in which these changes are integrated into the host response to pathogens is not well understood. The present experiments tested the hypothesis that short-day changes in immune function alter the pathogenesis of septic shock and survival after challenge with endotoxin. Male and female Siberian hamsters raised in long-day photoperiods were transferred as adults to short days or remained in their natal photoperiod. Six to 8 weeks later, hamsters were injected i.p. with 0, 1, 2.5, 10, 25, or 50 mg/kg bacterial lipopolysaccharide (LPS) (the biologically active constituent of endotoxin), and survival was monitored for 96 h. Short days significantly improved survival of male hamsters treated with 10 or 25 mg/kg LPS and improved survival in females treated with 50 mg/kg LPS. Transfer from long to short days shifted the LD50 in males by approximately 90%, from 5.3 to 9.9 mg/kg, and in females from 11.1 to 15.0 mg/kg (+35%). Long-day females were more resistant than were males to lethal endotoxemia. In vitro production of the proinflammatory cytokine TNFalpha in response to LPS stimulation was significantly lower in macrophages extracted from short-day relative to long-day hamsters, as were circulating concentrations of TNFalpha in vivo after i.p. administration of LPS, suggesting that diminished cytokine responses to LPS in short days may mitigate the lethality of endotoxemia. Adaptation to short days induces changes in immune parameters that affect survival in the face of immune challenges.  相似文献   

17.
The seasonal reproductive cycle of photoperiodic rodents is conceptualized as a series of discrete melatonin-dependent neuroendocrine transitions. Least understood is the springtime restoration of responsiveness to winter-like melatonin signals (breaking of refractoriness) that enables animals to once again respond appropriately to winter photoperiods the following year. This has been posited to require many weeks of long days based on studies employing static photoperiods instead of the annual pattern of continually changing photoperiods under which these mechanisms evolved. Maintaining Siberian hamsters under simulated natural photoperiods, we demonstrate that winter refractoriness is broken within six weeks after the spring equinox. We then test whether a history of natural photoperiod exposure can eliminate the requirement for long-day melatonin signalling. Hamsters pinealectomized at the spring equinox and challenged 10 weeks later with winter melatonin infusions exhibited gonadal regression, indicating that refractoriness was broken. A photostimulatory effect on body weight is first observed in the last four weeks of winter. Thus, the seasonal transition to the summer photosensitive phenotype is triggered prior to the equinox without exposure to long days and is thereafter melatonin-independent. Distinctions between photoperiodic and circannual seasonal organization erode with the incorporation in the laboratory of ecologically relevant day length conditions.  相似文献   

18.
Siberian hamsters (Phodopus sungorous sungorous) decrease their food intake when exposed to short (“winter-like”) photoperiods. The cause of this naturally-occurring hypophagia is unknown, but it may be due to a heightened sensitivity to the factors that normally terminate food intake in long photoperiods, such as the putative satiety peptides. The purpose of the present investigation was to test whether there would be an enhanced sensitivity to the inhibitory effects of some of these peptides on food intake in short relative to long days. Ad lib-fed, adult female Siberian hamsters were housed in a long photoperiod (LD 14:10) and injected with bombesin, glucagon, cholecystokinin octapeptide (CCK-8) and calcitonin (CT). Food intake was monitored 1, 2, 4, 6, and 24 hr post-injection. Bombesin and glucagon had no effect on food intake in long day-housed hamsters. CCK-8 and CT inhibited food intake; however, CCK-8 did so without any apparent behavioral disruption, while CT produced a marked and prolonged depression of behavior. After 10 weeks of exposure to a short photoperiod (LD 8:16) the hamsters were tested again. The previously ineffective dose of bombesin greatly inhibited food intake following short photoperiod exposure. In addition, an increased inhibition of food intake by CCK-8 was also found. In contrast, glucagon did not decrease food intake and CT still produced its non-specific, behaviorally disruptive effects. To our knowledge, this is the first demonstration that the effectiveness of a putative satiety peptide can be dependent upon a change in the photoperiod. This heightened responsiveness of short photoperiod-exposed Siberian hamsters to the inhibitory effects of bombesin and cholecystokinin may account for the reduction in food intake that accompanies short day exposure in this species.  相似文献   

19.
Changes in day length affect several measures of immunity in seasonally breeding mammals. In Siberian hamsters (Phodopus sungorus), short day lengths suppress specific secondary antibody responses to the keyhole limpet hemocyanin (KLH) antigen and enhance cutaneous delayed-type hypersensitivity (DTH) responses to dinitrofluorobenzene (DNFB). These experiments tested whether day length affects secondary antibody and DTH responses by altering immune function solely during the interval after the initial exposure to each antigen, solely during the interval after the second exposure, or during both stages of the respective immune responses. Adult male Siberian hamsters were exposed to either a long (16 h light/day; LD) or a short (8 h light/day; SD) photoperiod for 7.5 wk before receiving an initial exposure to each antigen (KLH injection, cutaneous DNFB treatment; separate groups of animals for each antigen). A subset of LD hamsters was transferred to the SD photo-period, and a subset of SD hamsters was transferred to the LD photoperiod. Other hamsters remained in LD or SD. Eight weeks later, all hamsters were challenged with a second subcutaneous injection of KLH or a second application of DNFB to the ear, and immune responses were measured. Exposure to SD during the primary antibody response did not affect secondary IgG responses, but SD exposure during the secondary response significantly suppressed IgG production independent of day length during the initial KLH treatment. In contrast, exposure to SD during the DNFB challenge enhanced the ensuing DTH response, but this enhancement depended on the photoperiod prevailing during the initial exposure. Exposure to SD during the sensitization stage did not enhance DTH in hamsters subsequently exposed to LD. The data suggest that short photoperiods have enduring effects on immune responsiveness and on the establishment and retention of immunological memory.  相似文献   

20.
Anthropogenic climate change alters seasonal conditions without altering photoperiod and can thus create a cue‐environment mismatch for organisms that use photoperiod as a cue for seasonal plasticity. We investigated whether evolution of the photoperiodic reaction norm has compensated for this mismatch in Colias eurytheme. This butterfly’s wing melanization has a thermoregulatory function and changes seasonally. In 1971, Hoffmann quantified how larval photoperiod determines adult wing melanization. We recreated his experiment 47 years later using a contemporary population. Comparing our results to his, we found decreased melanization at short photoperiods but no change in melanization at long photoperiods, which is consistent with the greater increase in spring than summer temperatures recorded for this region. Our study shows that evolution can help correct cue‐environment mismatches but not in the same way under all conditions. Studies of contemporary evolution may miss important changes if they focus on only a limited range of conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号