首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possible effect of melatonin, 5-methoxytryptamine, 5-methoxytryptophol, 6-chloromelatonin and 2-iodomelatonin on testosterone production by Leydig cells in vitro was investigated. The ability of individual indoles to inhibit testosterone production was found to depend on the concentration used. The relative inhibitory potency of the compounds tested was: 6-chloromelatonin greater than 2-iodomelatonin greater than melatonin greater than 5-methoxytryptamine greater than 5-methoxytryptophol. The results revealed that natural indoles which are synthesized in the pineal gland and their halogenized derivatives are capable of influencing directly testosterone production by Leydig cells. Also, these results demonstrated that melatonin exerts its remarkable antigonadotrophic effects, at least in part, through the direct decrease of testosterone production. Moreover, 6-chloromelatonin and 2-iodomelatonin, which are reported to inhibit melatonin binding to target tissues, possess properties of biological melatonin analogues under the conditions of the model system used.  相似文献   

2.
For years it was assumed that indoles, especially melatonin,were responsible for the ability of the pineal gland to inhibitpituitary gonadotrophins and thus depress sexual physiology.Recent studies have shown, however, that melatonin treatmentin two species of hamsters and in the rat is equivalent to pinealectomyin terms of its effect on reproduction. For example, both pinealectomyand the subcutaneous implantation of melatonin prevents darknessfrom depressing reproductive functions in experimental animals.Furthermore, both treatments also block the changes in pituitaryhormones which result from exposure to short daily photoperiods.Such findings suggest that the active pineal principles maybe something other than indoles and, indeed, a considerableamount of evidence indicates that polypeptides may account forthe pineal's ability to inhibit reproduction. A theory is presentedfor the cellular release of pineal polypeptides. In this schemethe pineal polypeptide hormones are exocytotically releasedfrom cells in conjunction with carrier proteins. The hormoneis then exchanged for calcium resulting in the liberation ofthe hormone into the pineal capillaries and in the eventualdeposition of calcium within the pineal gland. This theory providesa working hypothesis for the release of pineal hormonal productsand explains the presence of calcified deposits within the pinealgland.  相似文献   

3.
Less cyclic adenosine 3′:5′ monophosphate (cAMP) accumulated in rat pineal gland, invivo, after two doses of l-isoproterenol (5mg/kg, i.p.) than after one dose. A single injection of l-isoproterenol decreased the ability of l-isoproterenol to activate adenylate cyclase and increased the activity of the low Km phosphodiesterase (PDE). Tolerance to l-isoproterenol-induced accumulation of cAMP in rat pineal invivo may be due to decreased responsiveness of adenylate cyclase as well as to increased activity of PDE.  相似文献   

4.
Rat glioma C6 cell polyribosomal preparations were tested in a heterologous in vitro system for their ability to direct the synthesis of nerve growth factor related polypeptides. Two major polypeptides of MW ~ 21,000 and ~ 43,000 respectively were found, both of which were immunoprecipitable with specific anti-mouse 2.5S nerve growth factor serum. After incubation of in vitro synthesized proteins with submaxillary gland extract the bulk of these protein species was converted into immunoprecipitable material of MW ~ 13,000, which comigrated in sodium dodecyl sulfate/polyacrylamide gel electrophoresis with mouse 2.5S nerve growth factor.  相似文献   

5.
Taurine is believed to be a modulator of membrane excitability in muscle and a neuroinhibitory transmitter in the central nervous system. The retina and pineal contain relatively large quantities of taurine. Taurine levels in the retina are reported to be responsive to variations in lighting conditions. We report here a carcadian rhythm for taurine in the mature male rat pineal gland. The maximum taurine concentration occurs at the midpoint of the light period, 24 ± 1.9 nmoles/gland, and the minimum at the beginning of the dark period, 13.9 ± 1.6 nmoles/gland. Sympathectomy by bilateral superior cervical ganglionectomy lowered pineal taurine levels. Constant light and blinding had no effect. Taurine was demonstrated to be taken up by the pineal gland invitro in organ culture. The uptake was saturable, Km = 2.0 mM, and sodium dependent. The close structural analogs hypotaurine and β-alanine inhibited taurine uptake but α-alanine did not. We have demonstrated a circadian rhythm for taurine content in the rat pineal gland and the presence of a sodium-dependent transport system for taurine in the pineal invitro in organ culture.  相似文献   

6.
Light deprivation by blinding in female hamsters was followed by a regression of the reproductive organs, an elevation of pituitary LH concentration and a depression of pituitary prolactin levels. Pinealectomy negated almost completely the effects of light deprivation on the neuroendocrine-reproductive axis. Weekly subcutaneous implants of a melatonin:beeswax pellet completely prevented the pineal gland from inhibiting reproductive physiology in blinded hamsters. The findings suggest that melatonin is not pineal antigonadotrophic factor in female golden hamsters. Melatonin implanted hamsters also had higher than normal levels of plasma prolactin.  相似文献   

7.
The circadian rhythm of melatonin production (high melatonin levels at night and low during the day) in the mammalian pineal gland is modified by visible portions of the electromagnetic spectrum, i.e., light, and reportedly by extremely low frequency (ELF) electromagnetic fields as well as by static magnetic field exposure. Both light and non-visible electromagnetic field exposure at night depress the conversion of serotonin (5HT) to melatonin within the pineal gland. Several reports over the last decade showed that the chronic exposure of rats to a 60 Hz electric field, over a range of field strengths, severely attenuated the nighttime rise in pineal melatonin production; however, more recent studies have not confirmed this initial observation. Sinusoidal magnetic field exposure also has been shown to interfere with the nocturnal melatonin forming ability of the pineal gland although the number of studies using these field exposures is small. On the other hand, static magnetic fields have been repeatedly shown to perturb the circadian melatonin rhythm. The field strengths in these studies were almost always in the geomagnetic range (0.2 to 0.7 Gauss or 20 to 70 μtesla) and most often the experimental animals were subjected either to a partial rotation or to a total inversion of the horizontal component of the geomagnetic field. These experiments showed that several parameters in the indole cascade in the pineal gland are modified by these field exposures; thus, pineal cyclic AMP levels, N-acetyltransferase (NAT) activity (the rate limiting enzyme in pineal melatonin production), hydroxyindole-O-methyltransferase (HIOMT) activity (the melatonin forming enzyme), and pineal and blood melatonin concentrations were depressed in various studies. Likewise, increases in pineal levels of 5HT and 5-hydroxyindole acetic acid (5HIAA) were also seen in these glands; these increases are consistent with a depressed melatonin synthesis. The mechanisms whereby non-visible electromagnetic fields influence the melatonin forming ability of the pineal gland remain unknown; however, the retinas in particular have been theorized to serve as magnetoreceptors with the altered melatonin cycle being a consequence of a disturbance in the neural biological clock, i.e., the suprachiasmatic nuclei (SCN) of the hypothalamus, which generates the circadian melatonin rhythm. The disturbances in pineal melatonin production induced by either light exposure or non-visible electromagnetic field exposure at night appear to be the same but whether the underlying mechanisms are similar remains unknown.  相似文献   

8.
Sucrose gradient studies of rat pineal cytosol incubated with 3H-estradiol (female pineals) or 3H-5 α -dihydrotestosterone (male pineals) revealed a radioactivity peak in the 8 S region which disappeared after superior cervical ganglionectomy or incubation with excess unlabeled hormone. Ganglionectomy decreased significantly estradiol and testosterone uptake by the pineal gland in vitro as well as high affinity binding to pineal cytoplasmic and nuclear components. Norepinephrine treatment counteracted all the effects of ganglionectomy but was unable to modify hormone uptake and binding by the pineal gland of sham-operated controls. Pre-treatment with actinomycin D or propranolol but not with phentolamine impaired norepinephrine effects; propranolol blockage however was only partial. Administration of isoproterenol, L-dopa or phentolamine increased hormone uptake by denervated pineals. The effects of isoproterenol were also observed in vitro and were blocked by propranolol. These results indicate that sex steroid receptors in the pinealocytes are controlled by norepinephrine via beta-adrenergic receptors and that depletion of neural norepinephrine enhanced responsiveness of pineal hormone receptors to exogenous catecholamines.  相似文献   

9.
Unlike other temperate owls, Indian spotted owlet Athene brama possesses a well-developed pineal gland that secrets moderate amount of hydroxy- (serotonin) and methoxy- (melatonin) indoles in circulation. However, in this study, we have reported the response of this endocrine gland to exogenous L-Tryptophan (precursor of the above indoles), and also its effect on gonads of this nocturnal bird. During breeding phase or pineal inactive phase (March), oral treatment of L-Trp (0.5 mg/100 g Bwt/day) significantly increased the pineal gland wt and plasma melatonin (MEL) level, while decreased the gonadal wt and plasma sex steroids levels (estradiol and progesterone in female and testosterone in male). Interestingly, during reproductively quiescent phase or pineal active phase (August), similar amount of L-Trp significantly decreased the plasma MEL level, while increased the above sex steroid levels in plasma. Finally, the results show a clear reproductive phase-dependent inverse effect of L-Trp on pineal gland and gonads for both sexes of the spotted owlets, and suggest that the therapeutic use of this amino acid would be a great advantage for controlling the reproduction of these economically important birds.  相似文献   

10.
ABSTRACT

The diurnal and circadian profiles of pineal indoles, except melatonin, are poorly characterized in birds. Moreover, there are no data on the effect of sudden changes in the light–dark cycle on these profiles. Therefore, we investigated the diurnal (Experiment I) and circadian variation (Experiment II) of nine pineal indoles (tryptophan, 5-hydroxytryptophan, serotonin, N-acetylserotonin, melatonin, 5-hydroxyindole acetic acid, 5-methoxytryptophol, 5-methoxyindole acetic acid, 5-methoxytryptamine) in geese, as well as the changes in the profiles of these substances in geese subjected to a reversed light–dark cycle (Experiment III). For the first 12 weeks of life, all geese were kept under a diurnal cycle of 12 h of light and 12 h of darkness (12L:12D). In Experiment I (n = 48), they were kept under these conditions for another 14 days before being sacrificed at 2-h intervals for sampling of the pineal glands. In Experiment II, the geese (n = 48) were divided into three groups (12L:12D, 24L:0D, 0L:24D) for 10 days before sampling at 6-h intervals. In Experiment III, 24 geese were exposed to a reversed light–dark cycle before sampling at 14:00 and 02:00 on the first, second and third days after light–dark cycle reversal. To determine the content of the indoles in the goose pineals, HPLC with fluorescence detection was used. We found that, with the exception of tryptophan, all the investigated indoles showed statistically significant diurnal variation. When geese were kept in constant darkness, most of the indoles continued to show this variation, but when geese were kept in constant light, the indoles did not show significant variation. When the light–dark cycle was reversed (12L:12D to 12D:12L), the profiles of NAS, melatonin, 5-MTAM and 5-MTOL reflected the new cycle within 2 days. The content of serotonin in geese in 12L:12D was higher than that observed in other birds under these conditions, which suggests that this compound may play a special role in the pineal physiology of this species. In conclusion, our results show that the daily variations in the metabolism of melatonin-synthesis–related indoles in the goose pineal gland are generated endogenously and controlled by environmental light conditions, as in other birds. However, comparison of the results obtained with the goose to those obtained with other species (chicken, duck) unambiguously shows that the profiles of pineal indoles differ markedly between species, in both the quantitative proportions of the compounds and the characteristics of the diurnal changes. These findings provide strong arguments for the need for comparative studies.  相似文献   

11.
The effect of acute and repeated desmethylimipramine (DMI) treatment on catecholamine-stimulated production of adenosine 3', 5'-monophosphate (cyclic AMP) in rat pineal gland was studied invivo. In rats exposed to continuous illumination, the administration of isoproterenol (2μmol/kg) to control animals produced a marked increase in the concentration of cyclic AMP in pineal gland. In contrast, norepinephrine (2μmol/kg) failed to increase the levels of cyclic AMP. After acute treatment with DMI (single injection, 38μmol/kg, i. p.), the isoproterenol-induced rise in cyclic AMP was not significantly different from that measured in control animals. However, acute DMI treatment did allow a significant elevation in the concentration of cyclic AMP in pineal gland in response to norepinephrine. In rats given nine injections of DMI (38μmol/kg, i.p., twice daily) neither isoproterenol nor norepinephrine caused a significant increase in the concentration of cyclic AMP in pineal glands. Although acute treatment with DMI had no significant effect on [3H] dihydroalprenolol binding, chronic treatment with DMI significantly reduced [3H] dihydroalprenolol binding in the pineal gland. The results of this study suggest that while a single administration of DMI can enhance adrenergic responses elicited by norepinephrine, chronic administration of DMI leads to compensatory decreases in receptor density and adrenergic responsiveness.  相似文献   

12.
Neurohypophyseal peptide hormone activity is present in the pineal gland of mammals, and varies over a seasonal cycle. Pineal peptide levels, measured by arginine vasotocin (AVT) radioimmunoassay, increase dramatically for a brief time during August each year. The manner in which this cycle is regulated is as yet unknown. Input to the pineal from sympathetic axons arising in the superior cervical ganglia (SCG) is essential for the generation and regulation of the circadian rhythm in melatonin synthesis, and is the only pathway known to regulate pineal biochemical processes. It was of interest then to determine the impact of the SCG on the seasonal peptide cycle. Levels of pineal arginine vasotocin immunoactivity (iAVT) were monitored during August, 1984, in rats which had been superior cervical ganglionectomized (SCGX), in sham-operated and intact controls (L:D 12:12), and in rats subjected to L:D 22:2. The results indicate that SCGX does not abolish the seasonal cycle, but may influence the timing of the iAVT peak. Inhibition of pineal melatonin synthesis by exposure of rats to L:D 22:2 did not mimic the phase delay seen with SCGX, but did cause a significant increase in the amplitude of the August iAVT activity peak.  相似文献   

13.
The light/dark cycle to which animals, and possibly humans, are exposed has a major impact on their physiology. The mechanisms whereby specific tissues respond to the light/dark cycle involve the pineal hormone melatonin. The pineal gland, an end organ of the visual system in mammals, produces the hormone melatonin only at night, at which time it is released into the blood. The duration of elevated nightly melatonin provides every tissue with information about the time of day and time of year (in animals that are kept under naturally changing photoperiods). Besides its release in a circadian mode, melatonin is also discharged in a pulsatile manner; the physiological significance, if any, of pulsatile melatonin release remains unknown. The exposure of animals including man to light at night rapidly depresses pineal melatonin synthesis and, therefore, blood melatonin levels drop precipitously. The brightness of light at night required to depress melatonin production is highly species specific. In general, the pineal gland of nocturnally active mammals, which possess rod-dominated retinas, is more sensitive to inhibition by light than is the pineal gland of diurnally active animals (with cone-dominated retinas). Because of the ability of the light/dark cycle to determine melatonin production, the photoperiod is capable of influencing the function of a variety of endocrine and non-endocrine organs. Indeed, melatonin is a ubiquitously acting pineal hormone with its effects on the neuroendocrine system having been most thoroughly investigated. Thus, in nonhuman photoperiodic mammals melatonin regulates seasonal reproduction; in humans also, the indole has been implicated in the control of reproductive physiology.Summary of a Plenary Lecture presented by the author in Vienna, August, 1990  相似文献   

14.
15.
16.
The influence of hypothermal stress (+4 degrees during 3 h) on the ways of serotonin metabolism in pineal gland and its structure has been studied in dynamics on adult male Wistar rats. It has been revealed that melatonin-producing epiphyseal function suffers from phase changes in dynamics of adaptation--significant rising during 15 min. after beginning of the experiment, rehabilitation up to normal--in 30 min, and fast suppressing--in 3 hrs. Suppressing of the functional pineal activity is not due to switched serotonin metabolism with melatonin and new indoles release, but to a partial pinealocytes breaking from their active function.  相似文献   

17.
N-acetyltransferase (NAT) is believed to be the rate-limiting enzyme in the synthesis of melatonin from serotonin in the pineal gland. Norepinephrine released from sympathetic nerve endings within the pineal gland stimulates NAT activity and, therefore, melatonin synthesis. When an animal is subjected to a stressful stimulus, it would be expected that the increase in plasma stimulus, it would be expected that the increase in plasma catecholamines originating from the adrenal medulla and/or the sympathetic nervous system would result in a stimulation of pineal NAT activity. Adult male rats were given a 1.5cc injection of physiological saline subcutaneously into the back leg. Compared to non-injected controls, animals stressed in this manner were shown to have significantly lower pineal melatonin content 10 min after the saline injection late in the light phase of the light/dark cycle (at 18.30 h-lights on at 07.00 h). To test this more thoroughly, a time course study was conducted during the dark phase (at 02.00 h-5 hours after lights out) when pineal NAT activity and melatonin levels are either increasing or elevated. NAT activity and melatonin levels in the pineal were significantly depressed in stressed animals as compared to controls by 10 min after the saline injection, and remained so until 60 min after injection. By 90 min they had returned to control values. In the next study the nighttime response of the pineal to stress was compared in intact and adrenalectomized rats. Adrenalectomy prevented the changes in NAT activity and melatonin content associated with the saline injection. Some factor, such as a catecholamine or corticosterone from the adrenal, seems to be eliciting the response in the pineal to the saline injection. It is not known if the factor is acting centrally or directly on the pineal gland.  相似文献   

18.
The role of the pineal as an oncostatic gland has been studied in animal models of tumorigenesis, especially on those concerning the mammary gland. The general conclusion is that experimental manipulations activating pineal gland, or the administration of melatonin, reduce the incidence and growth rate of chemically-induced murine mammary tumors, while pinealectomy or situations which implicate a reduction of melatonin production usually stimulate mammary carcinogenesis. The direct actions of melatonin on mammary tumors have been suggested because of its ability to inhibit, at physiological doses (1nM), the in vitro proliferation of MCF-7 human breast cancer cells. In this article we review the outstanding findings related to melatonin actions on mammary which, taken together, support a possible usefulness of this indoleamine in the prevention and treatment of mammary gland malignancy.  相似文献   

19.
The influence of subcutaneous implants of melatonin on reproductive organ growth in neonatally testosterone propionate-(TP)-treated, blinded rats was investigated. The testes and accessory sex organs of rats that were TP-treated and blinded grew significantly slower than those of intact control rats. Either treatment of animals with melatonin or pinealectomy partially restored growth of the reproductive organs. In that the effects of melatonin treatment were similar to those of pinealectomy in this experiment model, it is speculated that melatonin may not be the principal pineal antigonadotrophic substance in the male rat.  相似文献   

20.
The mandibular gland secretions of males of the ants Camponotus herculeanus, C. ligniperda, and C. pennsylvanicus contain three major volatile substances. These compounds have been identified as 3,4-dihydro-8-hydroxy-3-methylisocoumarin (mellein or ochracin), methyl 6-methylsalicylate, and 10-methyldodecanoic acid. Mellein has not been isolated previously from animal sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号