首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arachidonate 5-lipoxygenase was purified to near homogeneity from the 105,000 X g supernatant of porcine leukocyte homogenate by immunoaffinity chromatography using a monoclonal anti-5-lipoxygenase antibody. Reaction of the purified enzyme with arachidonic acid produced predominantly 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid with concomitant formation of several more polar compounds in smaller amounts. These minor products were identified as the degradation products of leukotriene A4, namely, 6-trans-leukotriene B4 (epimeric at C-12) and an epimeric mixture of 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acids. These compounds were also produced by reaction of the enzyme with 5-hydroperoxy-eicosatetraenoic acid. Association of the 5-lipoxygenase and leukotriene A synthase activities was demonstrated by several experiments: heat inactivation of enzyme, effect of selective 5-lipoxygenase inhibitors, requirements of calcium ion and ATP, and self-catalyzed inactivation of enzyme. The enzyme was also active with 12- and 15-hydroperoxy-eicosatetraenoic acids producing (5S,12S)- and (5S,15S)-dihydroperoxy acids, respectively. Maximal velocities of the reactions with these hydroperoxy acids as compared with that of arachidonic acid (100%, 0.6 mumol/3 min/mg of protein) were as follows: 5-hydroperoxy acid, 3.5%, 12-hydroperoxy acid, 22%, and 15-hydroperoxy acid, 30%.  相似文献   

2.
The mycelium of Streptomyces chryzomallus var. macrotetrolidi producing the macrotetrolide antibiotic nonactin was shown to be capable of carbon dioxide fixation. Carbon was found to be incorporated into nonactin and macromolecular compounds in the biomass. Carbon was incorporated within 20 to 40 min of the mycelium incubation with NaH14CO3. Pyruvic and propionic acids stimulated carbon incorporation.  相似文献   

3.
The effect of Ca2+ on differentiation of Streptomyces hygroscopicus 155 and its inactive variant 155-0 was studied. Addition of Ca2+ to the medium induced formation of the aerial mycelium in the inactive variant and accelerated formation of the aerial mycelium in the parent strain. The inhibitory effect of EGTA, verapamil, nifedipin, chlorpromazine and dilthiazeme on the aerial mycelium formation demonstrated the physiological role of Ca2+ in the process. Addition of pandavir (nigericin) and azalomycin B, the antibiotics produced by the streptomycete, induced formation of the aerial mycelium in the inactive variant. The effect was higher in the presence of Ca2+. Streptomyces hygroscopicus 155 and its inactive variant synthesized a proteolytic complex containing metalloproteases and trypsin-like proteases. The total proteolytic activity of the inactive variant was lower than that of the parent strain. Addition of Ca2+ to the medium stimulated their proteolytic activity. The inducing action of the antibiotics produced by the parent strain on differentiation of S.hygroscopicus 155-0 and the increase of their action in the presence of Ca2+ suggested that they controlled the differentiation and that such a function of the antibiotics expressed itself through the Ca2+ signal system.  相似文献   

4.
The effect of a potent antioxidant, flavonoid dihydroquercetin on the activity of three mitochondrial enzymes in mouse skeletal muscles has been investigated. An ability of this substance to restore the activity of mitochondrial enzymes in old animals was demonstrated. The activities of citrate synthase, NADHcoenzymeQ1-oxidoreductase (complex 1) and cytochromc-oxidase (complex 4) were assessed using spectro-photometric analysis in a quadriceps muscle homogenate. It was shown that the citrate synthase activity decreased moderately and the activities of complexes 1 and 4 in skeletal muscles dropped significantly in old mice. Supplementation of drink water with dihydroquercetin for a few weeks led to an increase of citrate synthase and complex 1 activity (P < 0.1) in muscles of old animals. Activity of complex 4 returned to the level found in the tissue of young mice. Maximal activity of citrate synthase and complex 1 was found in muscles of young mice. Sensitivity of NADH-coenzymeQ1-oxidoreductase to a specific inhibitor rotenone differed in all three groups of mice. Young and old mice exhibited about 95% and 84% of the total sensitivity, respectively, while in old mice receiving dihydroquercetin the sensitivity of complex 1 to the inhibitor increased up to 98%. The biochemical alterations entailed an increase in animals’ mobility as well as an improvement of fur and skin condition. Fatty acid composition of homogenate in muscle tissue of all three groups was also investigated. A reliable decline of the amount of linoleic acid and an increase in stearic and docosanoic acid contents as well as an increase of total amount of fatty acids in muscles of old mice were found. Statistically significant changes in fatty acid composition in muscles of old mice in the control group and in old mice receiving antioxidant were not observed.  相似文献   

5.
Abstract: l -3,4-Dihydroxyphenylalanine ( l -DOPA) is toxic for human neuroblastoma cells NB69 and its toxicity is related to several mechanisms including quinone formation and enhanced production of free radicals related to the metabolism of dopamine via monoamine oxidase type B. We studied the effect of l -DOPA on activities of enzyme complexes in the electron transport chain (ETC) in homogenate preparations from the human neuroblastoma cell line NB69. As a preliminary step we compared the activity of ETC in cellular homogenates with that of purified mitochondria from NB69 cells and rat brain. Specific activities for complex I, complex II–III, and complex IV in NB69 cells were, respectively, 65, 96, and 32% of those in brain mitochondria. Complex I activity was inhibited in a dose-dependent way by 1-methyl-4-phenylpyridinium ion with an EC50 of ∼150 µ M . Treatment with 0.25 m M l -DOPA for 5 days reduces complex IV activity to 74% of control values but does not change either complex I or citrate synthase. Ascorbic acid (1 m M ), which protects NB69 cells from l -DOPA-induced neurotoxicity, increases complex IV activity to 133% of the control and does not change other ETC complexes. Ascorbic acid also reverses l -DOPA-induced reduction of complex IV activity in NB69 cells. This observation might indicate that the protection observed with ascorbic acid is related to complex IV activation. In vitro incubation with l -DOPA (0.125–4 m M ) for 2 min produced a dose-dependent reduction of complex IV without change in complex I and II–III activities.  相似文献   

6.
The activity of cutin-esterase, cutinase, was detected in themycelial homogenate of Botrytis cinerea cultured in a peptone-sucrosemedium at 25°C for 7 days. The crude enzyme solution wasprepared from the homogenate by centrifugation at 106,600xg,treatment with (NH4)2SO4 at 70% saturation, and dialysis against0.01 M phosphate buffer. The optimum pH, temperature and assayduration for enzyme activity were 5.0, 25°C and 18 hr, respectively.Specific activity was 255 mµmoles/mg protein/18 hr aspalmitate under optimum conditions. 83% of the activity waslost by heating the enzyme solution (pH 7.6) for 4 min at 95°C.Palmitic, stearic, oleic, 9, 10-dihydroxystearic or linoleic,dihydroxyeicosanoic and octadecanedioic acids were recognizedin the enzymic hydrolysate of tomato-cutin using gas-liquidchromatography. Among these fatty acids, palmitic, oleic andoctadecanedioic acids were readily liberated by the enzyme,but dihydroxyeicosanoic acid, the major component of tomato-cutin,was isolated only in small amounts. The enzyme is, therefore,an exo-type cutinase which hydrolyses minor side chains of fattyacids bound to the major structure of cutin. Cutinesterase mayfacilitate cuticular invasion by fungi as a result of reductionin mechanical strength of the cuticle by the enzyme 1Biological Laboratory, Research Department, Nihon Noyaku Co.,Ltd., Kawachinagano, Osaka, Japan (Received June 16, 1970; )  相似文献   

7.
NO synthase activity was found in the plasma (synaptosomal) membrane particles isolated from the homogenate of adult rat brain (without cerebellum) under conditions preventing the protease attack and formation of reactive oxygen species. The NO synthase discovered exhibited some properties of a neuronal constitutive integral membrane enzyme and was inhibited by N-nitro-L-arginine. NO synthase activity decreased when bilirubin entered the synaptosomal membrane in vitro. Bilirubin caused the shift of the transition temperature in the temperature dependence of NO synthase activity in Arrhenius plots. The incorporation of bilirubin into synaptosomal membranes resulted in an increase in the apparent activation energy for NO synthase within a temperature range of 10-30 degrees C. The membrane NO synthase was susceptible to the photodynamic effect of membrane-bound bilirubin molecules. Monomeric human serum albumin without organophilic ligands exerted a protective effect on NO synthase in bilirubin-containing membrane particles.  相似文献   

8.
Biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP) proceeds via two distinct pathways. Sequence comparisons and microbiological data suggest that multidrug-resistant strains of gram-positive cocci employ exclusively the mevalonate pathway for IPP biosynthesis. Bacterial mevalonate pathway enzymes therefore offer potential targets for development of active site-directed inhibitors for use as antibiotics. We used the PCR and Enterococcus faecalis genomic DNA to isolate the mvaS gene that encodes 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, the second enzyme of the mevalonate pathway. mvaS was expressed in Escherichia coli from a pET28 vector with an attached N-terminal histidine tag. The expressed enzyme was purified by affinity chromatography on Ni(2+)-agarose to apparent homogeneity and a specific activity of 10 micromol/min/mg. Analytical ultracentrifugation showed that the enzyme is a dimer (mass, 83.9 kDa; s(20,w), 5.3). Optimal activity occurred in 2.0 mM MgCl(2) at 37(o)C. The DeltaH(a) was 6,000 cal. The pH activity profile, optimum activity at pH 9.8, yielded a pK(a) of 8.8 for a dissociating group, presumably Glu78. The stoichiometry per monomer of acetyl-CoA binding was 1.2 +/- 0.2 and that of covalent acetylation was 0.60 +/- 0.02. The K(m) for the hydrolysis of acetyl-CoA was 10 microM. Coupled conversion of acetyl-CoA to mevalonate was demonstrated by using HMG-CoA synthase and acetoacetyl-CoA thiolase/HMG-CoA reductase from E. faecalis.  相似文献   

9.
Nitric oxide synthase is inhibited by NG-methylated derivatives of arginine whose cellular levels are controlled by dimethylarginine dimethylamino-hydrolase (DDAH). DDAH-1 is a Zn(II)-containing enzyme that through hydrolysis of methylated l-arginines regulates the activity of NOS. Herein, we report the kinetic properties of hDDAH-1 and its redox-dependent regulation. Kinetic studies using recombinant enzyme demonstrated Km values of 68.7 and 53.6 microM and Vmax values of 356 and 154 nmols/mg/min for ADMA and L-NMMA, respectively. This enzymatic activity was selective for free ADMA and L-NMMA and was incapable of hydrolyzing peptide incorporated methylarginines. Subsequent studies performed to determine the effects of reactive oxygen and reactive nitrogen species on DDAH activity demonstrated that low level oxidant exposure had little effect on enzyme activity and that concentrations approaching >or=100 microM were needed to confer significant inhibition of DDAH activity. However, exposure of DDAH to the lipid oxidation product, 4-HNE, dose-dependently inhibited DDAH activity with 15% inhibition observed at 10 microM, 50% inhibition at 50 microM, and complete inhibition at 500 microM. Mass spectrometry analysis demonstrated that the mechanism of inhibition resulted from the formation of Michael adducts on His 173, which lies within the active site catalytic triad of hDDAH-1. These studies were performed with pathophysiologicaly relevant concentrations of this lipid peroxidation product and suggest that DDAH activity can be impaired under conditions of increased oxidative stress. Because DDAH is the primary enzyme involved in methylarginine metabolism, the loss of activity of this enzyme would result in impaired NOS activity and reduced NO bioavailability.  相似文献   

10.
p-Aminobenzoic acid synthase (PABA synthase) of Streptomyces griseus catalyses the conversion of chorismic acid to p-aminobenzoic acid (PABA), a precursor of the aromatic p-aminoacetophenone moiety of candicidin, a polyene macrolide antibiotic. This enzyme uses glutamine or ammonia as amino donors for PABA formation. Enzyme extracts converted [14C]chorismic acid to labelled PABA. PABA synthase was present in S. griseus IMRU 3570 only during the antibiotic producing phase. No detectable levels of the enzyme were found in cell-free extracts of nonproducing mutants of S. griseus obtained after UV mutagenesis. PABA synthase activity was found also in Streptomyces coelicolor var. aminophilus, producer of the polyene macrolide antibiotic fungimycin, but it was not present in extracts of several other streptomycetes that do not produce aromatic polyene macrolide antibiotics. PABA synthase (amidotransferase) activity was partially purified by DEAE-Bio-gel and Sephacryl S-200 filtrations. The estimated molecular weight was 50000. PABA synthase was repressed by aromatic amino acids and PABA but not by anthranilic acid. Inorganic phosphate strongly repressed but did not inhibit PABA synthase activity.  相似文献   

11.
The plant enzyme arbutin synthase isolated from cell suspension cultures of Rauvolfia serpentina and heterologously expressed in Escherichia coli is a member of the NRD1beta family of glycosyltransferases. This enzyme was used to prove, by site-directed mutagenesis, suggested catalytic domains and reaction mechanisms proposed for enzyme-catalyzed glycosylation. Replacement of amino acids far from the NRD domain do not significantly affect arbutin synthase activity. Exchange of amino acids at the NRD site leads to a decrease of enzymatic activity, e.g. substitution of Glu368 by Asp. Glu368, which is a conserved amino acid in glycosyltransferases located at position 2 and is important for enzyme activity, does not serve as the nucleophile in the catalytic centre as proposed. When it is replaced by Ala, the resulting mutant enzyme E368A exhibits comparable activity as found for E368D in respect to vanillin. Enzyme activities of wild-type and E368A towards several substrates were not affected at the same level. His360 at position 1 of NRD1beta glycosyltransferases occupies a more crucial role as expected. When it is exchanged against other basic amino acids such as Lys or Arg the enzyme activity decreases approximately 1000-fold. Replacement of His360 by Glu leads to a mutant enzyme (H360E) with an approximately 4000-fold lower activity compared with the wild-type. This mutein still produces a beta-glucoside, not an alpha-glucoside and therefore indicates that generation of the typical E-E motif of NRD1alpha glycosyltransferases does not convert a NRD1beta enzyme into a NRD1alpha enzyme. The presented data do not support several suggestions made in the literature about catalytic amino acids involved in the glycosyltransfer reaction.  相似文献   

12.
A cDNA clone encoding a sesquiterpene synthase, (+)-germacrene D synthase, has been isolated from ginger (Zingiber officinale). The full-length cDNA (AY860846) contains a 1650-bp open reading frame coding for 550 amino acids (63.8kDa) with a theoretical pI=5.59. The deduced amino acid sequence is 30-46% identical with sequences of other sesquiterpene synthases from angiosperms. The recombinant enzyme, produced in Escherichia coli, catalyzed the formation of a major product, (+)-germacrene D (50.2% of total sesquiterpenoids produced) and a co-product, germacrene B (17.1%) and a number of minor by-products. The optimal pH for the recombinant enzyme is around 7.5. Substantial (+)-germacrene D synthase activity is observed in the presence of Mg2+, Mn2+, Ni2+ or Co2+, while the enzyme is inactive when Cu2+ or Zn2+ is used. The Km- and kcat-values are 0.88 microM and 3.34 x 10(-3) s(-1), respectively. A reaction mechanism involving a double 1,2-hydride shift has been established using deuterium labeled substrates in combination with GC-MS analysis.  相似文献   

13.
A very effective lytic enzyme system for massive micro/macro-scale production of protoplasts from the filamentous fungus Aspergillus nidulans is described. A striking coincidence was observed between maximal lytic activity towards Aspergillus mycelium and the presece of both chitinase and alpha-(1 leads to 3)-glucanase activities. The release of protoplasts was greatly enhanced by preincubating the mycelium with 2-deoxy-D-glucose. Furthermore, protoplast formation was influenced by fungal age, culture conditions, pH of incubation and the osmotic stabilizer used. From 40 mg of fresh mycelium, grown for 14--16 h on 1% glucose in a low phosphate-citrate medium, preincubated with 2-deoxy-D-glucose for 45 min, and then incubated with the lytic enzyme mixture at pH 6.5 in the presence of 0.3--0.4 M (NH4) SO4, 2.5 x 10(8) stable protoplasts were produced within 3 h of incubation at 30 degrees C. Comparable results were obtained with 40--50 g of mycelium. At low osmotic stabilizer concentrations a peculiar type of regeneration was observed in the presence of the lytic enzyme system; within 12 h of incubation aberrant hyphal structure emerged from the large vacuolated protoplasts.  相似文献   

14.
The photosynthetic coccolithophoid alga, Pleurochrysis (Hymenomonas) carterae, could take up and accumulate exogenous vitamin B12, most of which was converted into the coenzyme forms of vitamin B12. Two vitamin B12-dependent enzyme activities (methylmalonyl-CoA mutase, 2.6+/-0.4 nmol/min/mg protein and methionine synthase, 85.1+/-38.9 pmol/min/mg protein) could be found in a cell homogenate of the vitamin B12-supplemented alga. Most of the methylmalonyl-CoA mutase activity and 19.2% of the vitamin B12 accumulated by the algal cells were recovered in the macromolecular fractions with Mr of 150 kDa, although the remaining vitamin B12 was found only in free vitamin B12 fractions.  相似文献   

15.
This work shows that unsaturated fatty acids enhance the epinephrine-stimulated adenylate cyclase activity in bovine retina. The modulating effect on the epinephrine-stimulated formation of cyclic AMP seems to be linked to the degree of unsaturation of the fatty acid. Treatment of the intact retina with docosahexaenoic acid in the concentration range 0.5 X 10(-6)-1 X 10(-3) M does not affect the enzyme activity measured in the absence of the hormone but markedly increases the cyclase activity when the tissue is incubated in the presence of 0.1 mM epinephrine. Docosahexaenoic acid enhances the maximal response to epinephrine without affecting the apparent ED50 value for this effector. Docosahexaenoic acid at 0.5 mM also increases the hormone-stimulated adenylate cyclase activity in retinal cell-free homogenate, whereas it has no effect on the epinephrine-sensitive enzyme solubilized from the membrane fraction with 1% Triton X-305. When docosahexaenoic acid-preincubated intact retina and cell-free homogenate are incubated in the presence of defatted albumin, both the observed activating effect of the fatty acid on the epinephrine-stimulated adenylate cyclase activity and the enhancement of the enzyme response to the hormone significantly diminish.  相似文献   

16.
The role of endogenous regucalcin, which is a regulatory protein in calcium signaling, in the regulation of nitric oxide (NO) synthase activity in the cloned rat hepatoma H4-II-E cells was investigated. Hepatoma cells were cultured for 24-72 h in the presence of fetal bovine serum (FBS; 10%). NO synthase activity in the 5,500 g supernatant of cell homogenate was significantly increased by the addition of calcium chloride (10 microM) and calmodulin (2.5 microg/ml) in the enzyme reaction mixture. The presence of trifluoperazine (TFP; 50 microM), an antagonist of calmodulin, inhibited the effect of calcium (10 microM) addition in increasing NO synthase activity, indicating the existence of Ca(2+)/calmodulin-dependent NO synthase in hepatoma cells. NO synthase activity was significantly decreased by the addition of regucalcin (10(-8) or 10(-7) M) in the reaction mixture without or with Ca(2+)/calmodulin addition. The effect of regucalcin (10(-7) M) in decreasing NO synthase activity was also seen in the presence of TFP (50 microM) or EGTA (1 mM). The presence of anti-regucalcin monoclonal antibody (10-50 ng/ml) in the reaction mixture caused a significant elevation of NO synthase activity. NO synthase activity was significantly suppressed in the hepatoma cells (transfectants) overexpressing regucalcin. This decrease was completely abolished in the presence of anti-regucalcin monoclonal antibody (50 ng/ml) in the reaction mixture. Moreover, the effect of Ca(2+)/calmodulin addition in increasing NO synthase activity in the hepatoma cells (wild-type) was completely prevented in transfectants. The present study demonstrates that endogenous regucalcin has a suppressive effect on NO synthase activity in the cloned rat hepatoma H4-II-E cells.  相似文献   

17.
Phospholipase A2, which is localized in the mucosal part of the corpus of rat stomach (Hirohara et al. (1987) Biochim. Biophys. Acta 919, 231-238), was purified 990-fold from the supernatant of a tissue homogenate by heat treatment at acidic pH, ammonium sulfate fractionation, ion-exchange chromatography, gel-filtration and reverse-phase high-performance liquid chromatography (reverse-phase HPLC). The purified enzyme gave a single protein band on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with a molecular mass of approx. 17 kDa. The enzyme had a pH optimum of 8.0 and hydrolyzed the 2-arachidonoyl residue of phosphatidylcholine preferentially to the 2-oleoyl residue, the Vmax and Km values for the two being 227 and 29 mumol/min per mg protein and 0.037 and 0.019 mM, respectively. The activity was calcium-dependent and was markedly increased by SDS and dimethyl sulfoxide (DMSO). The enzyme showed typical product inhibition. Free unsaturated fatty acids (oleic, arachidonic and docosahexaenoic acids), which are supposedly the main enzymatic products in vivo, inhibited the activity. Arachidonic acid caused noncompetitive inhibition and its concentration for its maximal inhibition (50% inhibition) was 5 x 10(-5) M. Lysophosphatidylcholine, free saturated fatty acids (palmitic and stearic acids) and arachidonic acid metabolites (leukotrienes and prostaglandins) had no effect on the activity.  相似文献   

18.
A procedure for the rapid purification of nucleoside diphosphate kinase, 24 h with a single operator, from the chick brain soluble fraction is described. The influence of the ionic conditions on the association-disassociation properties of the enzyme are exploited to obtain yields of 30% from the crude homogenate. The enzyme has been purified 500-fold with a maximal specific activity of 1500 μmol/min/mg at 25°C (using thymidine diphosphate as the phosphate acceptor and ATP as the donor) and is demonstrated to be monoisozymic.  相似文献   

19.
We describe a method for the detection and quantification of D-aspartate N-methyltransferase activity. The enzyme catalyzes the S-adenosyl-L-methionine-dependent N-methylation of D-aspartate to form N-methyl-D-aspartate (NMDA). NMDA is detected directly by high-performance liquid chromatography (HPLC) of their (+)- and/or (-)-1-(9-fluorenyl)ethyl chloroformate fluorescent derivatives. The NMDA production in the assay mixture is linearly proportional to the incubation time and the amount of tissue homogenate. Using a 10 min incubation time, the method allows detection of the enzyme activity below 10 fmol/min. It can be used to analyze kinetic behavior and to quantify the enzyme from a wide variety of organisms.  相似文献   

20.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1alpha promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11, 14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on alpha-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and gamma-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 micromol/45 min per mg protein by nickel-nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11, 14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号