首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the human genome there is one expressed gene for argininosuccinate synthetase and 14 pseudogenes. A cDNA coding for human argininosuccinate synthetase was used to screen a human genomic library. Twenty-five unique genomic clones were isolated and extensively characterized. At least seven clones represented processed argininosuccinate synthetase pseudogenes that lost the introns in the expressed gene. Restriction mapping demonstrated that these processed pseudogenes were located in distinct regions of the human genome. Complete nucleotide sequences of two processed pseudogenes, psi AS-1 and psi AS-3, and a partial sequence of psi AS-7 were determined. Both psi AS-1 and psi AS-3 had an adenine-rich region at their 3' end and were flanked by distinct imperfect direct repeats. A comparison of these pseudogene sequences to that of the cDNA demonstrated that psi AS-1 and psi AS-3 were 93% homologous to the cDNA, whereas psi AS-7 was 89% homologous to the cDNA. Therefore, it is estimated that psi AS-1 and psi AS-3 were created 10-11 million years ago, whereas psi AS-7 arose approximately 21 million years ago. We have estimated the evolutionary rate for the expressed argininosuccinate synthetase gene based on the sequences of psi AS-1 and psi AS-3. These data indicate that the expressed argininosuccinate synthetase gene is evolving at a rate similar to that of the beta-globin gene and much faster than the alpha-tubulin gene. Furthermore, a comparison of the sequences of psi AS-1 and psi AS-3 suggests the possibility that these pseudogenes arose from a common intermediate.  相似文献   

3.
4.
5.
6.
Subunit Vb of mammalian cytochrome c oxidase (COX; EC 1.9.3.1) is encoded by a nuclear gene and assembled with the other 12 COX subunits encoded in both mitochondrial and nuclear DNA. We have cloned the gene for human COX subunit Vb (COX5B) and determined the exon-intron structure by both hybridization analysis and DNA sequencing. The gene contains five exons and four introns; the four coding exons span a region of approximately 2.4 kb. The 5' end of the COX5B gene is GC-rich and contains many HpaII sites. Genomic Southern blot analysis of human DNA probed with the human COX Vb cDNA identified eight restriction fragments containing COX Vb-related sequences that were mapped to different chromosomes with panels of human x Chinese hamster somatic cell hybrids. Because only one of these fragments hybridized with a 210-bp probe from intron 4, we conclude that there is a single expressed gene for COX subunit Vb in the human genome. We have mapped this gene to chromosome 2, region cen-q13.  相似文献   

7.
Evolution of immunoglobulin VH pseudogenes in chickens   总被引:5,自引:0,他引:5  
In chickens, there is a single functional gene (VH1) coding for the heavy chain variable region of immunoglobulins, and immunoglobulin diversity is generated by gene conversion of the VH1 gene by many variable region pseudogenes (psi VH's) that exist on the 5' side of the VH1 gene. To understand the evolution of this unique genetic system, we conducted statistical analyses of VH1 and psi VH genes together with functional VH genes from other higher vertebrate species. The results indicate, first, that chicken VH genes are all closely related to one another and were derived relatively recently from an ancestral gene belonging to one of the three major groups of VH genes in higher vertebrates. Second, the rate of nonsynonymous substitution is slightly higher than that of synonymous substitution in the complementarity- determining regions (CDRs), which suggests that diversity-enhancing selection has operated in the CDRs even for pseudogenes. However, both the rates of synonymous and nonsynonymous substitution are higher in the CDRs than in the framework regions (FRs), apparently because of an interaction between positive selection and meiotic gene conversion in the CDRs. Third, a dot matrix analysis of the psi VH genes and genomic diversity (D) genes has indicated that the 3' end of psi VH genes is attached by D-gene-like sequences, and this region of psi VH genes has high similarity with D gene sequences. This suggests that V and D genes were fused at some point of evolutionary time and this fused element multiplied by gene duplication. Finally, two alternative hypotheses of explaining the evolution of the chicken VH gene system are presented.   相似文献   

8.
We screened two human genomic libraries and isolated 14 different clones, designated λG1 and EG1-EG13, homologous to human glyceraldehyde-3-phosphate dehydrogenase (GAPD) cDNA. Subcloning and sequencing these recombinant phages led us to classify them as five different pseudogenes (ψG1–ψG5). All these sequences show such features typical of processed pseudogenes as numerous mutations, insertions, and deletions. The identity of numerous mutated sites among these pseudogenes and the presence of two Alu sequences flanking both ends of ψG1 suggest that GAPD pseudogenes originated from a unique reverse transcribed mRNA followed by gene duplication. The rate of nucleotide substitutions per site per year for known GAPD functional genes is low both for the synonymous substitutions (1.87×10−9) and for the nonsynonymous substitutions (0.12¢10−9) and indicates that the GAPD cDNA sequence is well conserved not only at the amino acid level, but also at the nucleotide level. The rate of nucleotide substitutions per site per year for GAPD pseudogenes shows a higher value (5.9×10−9) and suggests that these pseudogenes do not have any functional role. This work was supported by grants from the Consiglio Nazionale delle Ricerche and the Ministero Pubblica Istruzione (Rome, Italy). Special acknowledgment is given to the “Progetto Finalizzato Ingegneria Genetica e Basi Molecolari delle Malattie Ereditarie.”  相似文献   

9.
J Y Tso  X H Sun  T H Kao  K S Reece    R Wu 《Nucleic acids research》1985,13(7):2485-2502
Full length cDNAs encoding the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from rat and man have been isolated and sequenced. Many GAPDH gene-related sequences have been found in both genomes based on genomic blot hybridization analysis. Only one functional gene product is known. Results from genomic library screenings suggest that there are 300-400 copies of these sequences in the rat genome and approximately 100 in the human genome. Some of these related sequences have been shown to be processed pseudogenes. We have isolated several rat cDNA clones corresponding to these pseudogenes indicating that some pseudogenes are transcribed. Rat and human cDNAs are 89% homologous in the coding region, and 76% homologous in the first 100 base pairs of the 3'-noncoding region. Comparison of these two cDNA sequences with those of the chicken, Drosophila and yeast genes allows the analysis of the evolution of the GAPDH genes in detail.  相似文献   

10.
The promoter sequences required for expression of the Arabidopsis thaliana COX5b-2 gene, encoding an isoform of cytochrome c oxidase subunit 5b, were analyzed using plants transformed with deleted and mutagenized forms of the promoter fused to gus . A 1000-bp promoter fragment produces expression in root and shoot meristems, leaf and cotyledon tips, and anthers. Deletion analysis indicated the presence of positive and negative regulatory elements. A regulatory element located between −660 and −620 from the translation start site was identified as a G-box by mutagenic analysis. Mutation of the G-box, that is present within the coding region of the preceding gene in the genome, increases expression of COX5b-2 in cotyledon and leaf lamina and abolishes induction by ultraviolet-B (UV-B) light, which presumably acts through the removal of an inhibitory factor. Identified positive regulatory elements include a site II element (TGGGCC), a related element with the sequence TGGGTC and four initiator elements (YTCANTYY) that completely abolish expression when mutated in combination. Site II elements are also involved in the response to sucrose. The results imply that the COX5b-2 gene has retained expression characteristics presented by most respiratory chain component genes, but its expression mechanisms have diverged from those employed by COX5b-1 , the other gene encoding cytochrome c oxidase subunit 5b in Arabidopsis.  相似文献   

11.
12.
We have cloned and sequenced COX12, the nuclear gene for subunit VIb of Saccharomyces cerevisiae cytochrome c oxidase. This subunit, which was previously not found in cytochrome c oxidase purified from S. cerevisiae, has a deduced amino acid sequence which is 41% identical to the sequences of subunits VIb of bovine and human cytochrome c oxidases. The chromosomal copy of COX12 was replaced with a plasmid-derived copy of COX12, in which the coding region for the suspected cytochrome oxidase subunit was replaced with the yeast URA3 gene. The resulting Ura+ deletion strain grew poorly at room temperature and was unable to grow at 37 degrees C on ethanol/glycerol medium, whereas growth was normal at both temperatures on dextrose. This temperature-dependent, petite phenotype of the deletion strain was complemented to wild-type growth with a single copy plasmid carrying COX12. Cytochrome c oxidase activity in mitochondrial membranes from the cox12 deletion strain is decreased to 5-15% of that in membranes from the wild-type parent, and this activity is restored to normal when the cox12 deletion strain is complemented by the plasmid-borne COX12. Optical spectra of mitochondrial membranes from the cox12 deletion strain revealed that optically detectable cytochrome c oxidase is assembled at room temperature and at 37 degrees C, although the heme a + a3 absorption is diminished approximately 50%. The N-terminal amino acid sequence of the protein encoded by COX12 is identical to the N-terminal sequence of a subunit found in yeast cytochrome c oxidase purified by a new procedure (Taanman, J.-W., and Capaldi, R. A. (1992) J. Biol. Chem. 267, 22481-22485). We conclude that COX12 encodes a subunit of yeast cytochrome c oxidase which is essential during assembly for full cytochrome c oxidase activity but apparently can be removed after the oxidase is assembled, with retention of oxidase activity. This is the first instance in which deletion of a subunit of cytochrome c oxidase results in assembly of optically detectable cytochrome c oxidase but having markedly diminished activity.  相似文献   

13.
While only two gamma-crystallins have been identified in the human eye lens, molecular studies indicate that the human gamma-crystallins are encoded in a multigene family comprising at least seven closely related members. Sequence analysis of five of these genes has suggested that three (gamma 1-2, G3, and G4) are potentially active, while two (G1 psi and G2 psi) correspond to closely related pseudogenes. Here we report on the detailed structure of a sixth gamma-crystallin gene, G5, and our results obtained with transient expression assays to characterize both the promoter activity and translation products of five members of the gene family. We show that 5'-flanking sequences of G1 psi and G2 psi lacked detectable promoter activity, while the corresponding sequences of G3, G4, and G5 were able to direct high levels of expression of the bacterial chloramphenicol acetyltransferase gene in primary lens epithelia, but not in cultures of nonlens origin. Detailed sequence comparisons indicated that active genes contained several conserved sequence tracts 5' of the TATA box which may constitute functional elements of a lens-specific gamma-crystallin promoter. Expression of the gamma-crystallin coding sequences from the human metallothionein IIA promoter in nonlens cells facilitated characterization of the polypeptides encoded by individual gamma-genes and, in future studies, should permit comparison of these proteins with distinct gamma-crystallins in the human lens.  相似文献   

14.
15.
16.
17.
18.
The human glutathione S-transferases are products of a gene superfamily which consists of at least four gene families. The various glutathione S-transferase genes are located on different human chromosomes, and new gene(s) are still being added to the gene superfamily. We have characterized a cDNA in pGTH4 encoding human glutathione S-transferase subunit 4 (GST mu) and mapped its gene (or a homologous family member) on chromosome 1 at p31 by in situ hybridization. Genomic Southern analysis with the 3' noncoding region of the cDNA revealed at least four human DNA fragments with highly homologous sequences. Using a panel of DNAs from mouse-human somatic cell hybrids in genomic DNA hybridization we show that the Hb (or B) genes of human glutathione S-transferases are on three separate chromosomes: 1, 6, and 13. Therefore, the glutathione S-transferase B gene family, which encodes the Hb (mu) class subunits, is a dispersed gene family. The GST mu (psi) gene, whose expression is polymorphic in the human population, is probably located on chromosome 13. We propose that the GST mu (psi) gene was created by a transposition or recombination event during evolution. The null phenotype may have resulted from a lack of DNA transposition just as much as from the deletion of an inserted gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号