首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A straightforward enzymatic protocol for converting regular DNA into pseudo-complementary DNA could improve the performance of oligonucleotide microarrays by generating readily hybridizable structure-free targets. Here we screened several highly destabilizing analogs of G and C for one that could be used with 2-aminoadenine (nA) and 2-thiothymine (sT) to generate structure-free DNA that is fully accessible to complementary probes. The analogs, which included bioactive bases such as 6-thioguanine (sG), 5-nitrocytosine (NitroC), 2-pyrimidinone (P; the free base of zebularine) and 6-methylfuranopyrimidinone (MefP), were prepared as dNTPs and evaluated as substrates for T7 and Phi29 DNA polymerases that lacked editor function. Pairing properties of the analogs were characterized by solution hybridization assays using modified oligonucleotides or primer extension products. P and MeP did not support robust primer extension whereas sG and NitroC did. In hybridization assays, however, sG lacked discrimination and NitroC paired too strongly to C. The dNTPs of two other base analogs, 7-nitro-7-deazahypoxanthine (NitrocH) and 2-thiocytosine (sC), exhibited the greatest promise. Either analog could be used with nA and sT to generate DNA that was nearly structure-free. Hybridization of probes to these modified DNAs will require the development of base analogs that pair strongly to NitrocH or sC.  相似文献   

2.
Unrestricted accessibility of short oligonucleotides to RNA   总被引:3,自引:0,他引:3  
  相似文献   

3.
Gamper HB  Arar K  Gewirtz A  Hou YM 《Biochemistry》2006,45(22):6978-6986
The existence of secondary structure in long single-stranded DNA and RNA is a serious obstacle to the practical use of short oligonucleotide probes (<20-mers). Here, we show that replication of a highly structured DNA in the presence of a unique set of dNTP analogues leads to synthesis of daughter DNA with a significantly reduced level of secondary structure. This replicated DNA, composed of 2-aminoadenine, 2-thiothymine, 7-deazaguanine, and cytosine bases, was readily accessible to tiled 8-mer LNA and 15-mer DNA probes, whereas an unmodified version of the same DNA was inaccessible. Importantly, while the base analogues enhanced probe-target stability, they did not significantly reduce the specificity of base pairing. The availability of structure-free DNA targets should facilitate the use of short oligonucleotide probes and promote development of generic oligonucleotide microarrays.  相似文献   

4.
5.
A microtiter-based assay system is described in which DNA hairpin probes with dangling ends and single-stranded, linear DNA probes were immobilized and compared based on their ability to capture single-strand target DNA. Hairpin probes consisted of a 16 bp duplex stem, linked by a T2-biotin·dT-T2 loop. The third base was a biotinylated uracil (UB) necessary for coupling to avidin coated microtiter wells. The capture region of the hairpin was a 3′ dangling end composed of either 16 or 32 bases. Fundamental parameters of the system, such as probe density and avidin adsorption capacity of the plates were characterized. The target DNA consisted of 65 bases whose 3′ end was complementary to the dangling end of the hairpin or to the linear probe sequence. The assay system was employed to measure the time dependence and thermodynamic stability of target hybridization with hairpin and linear probes. Target molecules were labeled with either a 5′-FITC, or radiolabeled with [γ-33P]ATP and captured by either linear or hairpin probes affixed to the solid support. Over the range of target concentrations from 10 to 640 pmol hybridization rates increased with increasing target concentration, but varied for the different probes examined. Hairpin probes displayed higher rates of hybridization and larger equilibrium amounts of captured targets than linear probes. At 25 and 45°C, rates of hybridization were better than twice as great for the hairpin compared with the linear capture probes. Hairpin–target complexes were also more thermodynamically stable. Binding free energies were evaluated from the observed equilibrium constants for complex formation. Results showed the order of stability of the probes to be: hairpins with 32 base dangling ends > hairpin probes with l6 base dangling ends > 16 base linear probes > 32 base linear probes. The physical characteristics of hairpins could offer substantial advantages as nucleic acid capture moieties in solid support based hybridization systems.  相似文献   

6.
Some regions of nucleic acid targets are not accessible to heteroduplex formation with complementary oligonucleotide probes because they are involved in secondary structure through intramolecular Watson–Crick pairing. The secondary conformation of the target may be destabilised to assist its interaction with oligonucleotide probes. To achieve this, we modified a DNA target, which has self-complementary sequence able to form a hairpin loop, by replacing dC with N4-ethyldeoxycytidine (d4EtC), which hybridises specifically with natural dG to give a G:4EtC base pair with reduced stability compared to the natural G:C base pair. Substitution by d4EtC greatly reduced formation of the target secondary structure. The lower level of secondary structure allowed hybridisation with complementary probes made with natural bases. We confirmed that hybridisation could be further enhanced by modifying the probes with intercalating groups which stabilise the duplex.  相似文献   

7.
By combining Ce(IV)/EDTA with two pseudo-complementary peptide nucleic acids (pcPNAs), both strands in double-stranded DNA were site-selectively hydrolyzed at the target site. Either plasmid DNA (4361 bp) or its linearized form was used as the substrate. When two pcPNAs invaded into the double-stranded DNA, only the designated portion in each of the two strands was free from Watson–Crick base pairing with the counterpart DNA or the pcPNA. Upon the treatment of this invasion complex with Ce(IV)/EDTA at 37°C and pH 7.0, both of these single-stranded portions were selectively hydrolyzed at the designated site, resulting in the site-selective two-strand scission of the double-stranded DNA. Furthermore, the hydrolytic scission products were successfully connected with foreign double-stranded DNA by using ligase. The potential of these artificial systems for manipulation of huge DNA has been indicated.  相似文献   

8.
Becker M  Lerum V  Dickson S  Nelson NC  Matsuda E 《Biochemistry》1999,38(17):5603-5611
A highly chemiluminescent reporter molecule, acridinium ester (AE), was tethered to single-stranded oligonucleotide probes and hybridized to complementary as well as mismatched target sequences. When tethered to single-stranded probes, AE was readily hydrolyzed by water or hydroxide ion. In contrast, when hybridized to a complementary target, hydrolysis of the AE probe was markedly inhibited. Mismatches near AE eliminated the ability of the double helix to strongly inhibit AE hydrolysis. To establish the molecular basis for these remarkable hydrolysis properties of AE-labeled probes, the binding and hydrolysis mechanisms of AE-labeled probes were examined. When tethered to single- or double-stranded nucleic acids, hydrolysis of AE was found to proceed by generalized base catalysis in which a base abstracts a proton from water and the resulting hydroxide ion then hydrolyzes AE. Analysis of the hydrolysis rates of AE bound to DNA revealed that AE binds the minor groove of DNA and that its hydrolysis is inhibited by low water activity within the minor groove of the helix. Depending upon the sequence of the DNA, the water activity of the minor groove was estimated to be at least 2-4-fold lower than bulk solution. Hydrolysis measurements of AE tethered to RNA as well as RNA/DNA hybrids argued that the grooves of these double helices are also dehydrated relative to bulk solution. Remarkably, mismatched bases, regardless of their structure or sequence context, enhanced hydrolysis of AE by inducing hydration of the double helix that spread approximately five base pairs on either side of the mismatch.  相似文献   

9.
Oligonucleotide probes containing locked nucleic acid (LNA) hybridize to complementary single-stranded target DNA sequences with an increased affinity compared to oligonucleotide DNA probes. As a consequence of the incorporation of LNA residues into the oligonucleotide sequence, the melting temperature of the oligonucleotide increases considerably, thus allowing the successful use of shorter LNA probes as allele-specific tools in genotyping assays. In this article, we report the use of probes containing LNA residues for the development of qualitative fluorescent multiplex assays for the detection of single nucleotide polymorphisms (SNPs) in real-time polymerase chain reaction using the 5'-nuclease detection assay. We developed two applications that show the improved specificity of LNA probes in assays for allelic discrimination. The first application is a four-color 5'-nuclease assay for the detection of SNPs for two of the most common genetic factors involved in thrombotic risk, factor V Leiden and prothrombin G20210A. The second application is a two-color assay for the specific detection of the A-to-T tranversion in codon 6 of the beta-globin gene, responsible for sickle cell anemia. Both real-time genotyping assays were evaluated by comparing the performance of our method to that of a reference method and in both cases, we found a 100% concordance. This approach will be useful for research and molecular diagnostic laboratories in situations in which the specificity provided by oligonucleotide DNA probes is insufficient to discriminate between two DNA sequences that differ by only one nucleotide.  相似文献   

10.
Oligonucleotides that can hybridize to single-stranded complementary polypurine nucleic acid targets by Watson-Crick base pairing as well as by Hoogsteen base pairing, referred to here as foldback triplex-forming oligonucleotides (FTFOs), have been designed. These oligonucleotides hybridize with target nucleic acid sequences with greater affinity than antisense oligonucleotides, which hybridize to the target sequence only by Watson-Crick hydrogen bonding [Kandimalla, E. R. and Agrawal, S. Gene(1994) 149, 115-121 and references cited therein]. FTFOs have been studied for their ability to destabilize quadruplexes formation by RNA or DNA target sequences. The influence of various DNA/RNA compositions of FTFOs on their ability to destabilize RNA and DNA quadruplexes has been examined. The ability of the FTFOs to destabilize quadruplex structures is related to the structurally and thermodynamically stable foldback triplex formed between the FTFO and its target sequence. Antisense oligonucleotides (DNA or RNA) that can form only a Watson-Crick double helix with the target sequence are unable to destabilize quadruplex structures of RNA and DNA target sequences and are therefore limited in their repertoire of target sequences. The quadruplex destabilization ability of FTFOs is dependent on the nature of the cation present in solution. The RNA quadruplex destabilization ability of FTFOs is -20% higher in the presence of sodium ion than potassium ion. The use of FTFOs, which can destabilize quadruplex structure, opens up new areas for development of oligonucleotide-based therapeutics, specifically, targeting guanine-rich sequences that exist at the ends of pro- and eukaryotic chromosomes and dimerization regions of retroviral RNA.  相似文献   

11.
Measurement of steady-state rates of unwinding of double-stranded oligonucleotides by helicases is hampered due to rapid reannealing of the single-stranded DNA products. Including an oligonucleotide in the reaction mixture which can hybridize with one of the single strands can prevent reannealing. However, helicases bind to single-stranded DNA, therefore the additional oligonucleotide can sequester the enzyme, leading to slower observed rates for unwinding. To circumvent this problem, the oligonucleotide that serves as a trap was replaced with a strand of peptide nucleic acid (PNA). Fluorescence polarization was used to determine that a 15mer PNA strand does not bind to the bacteriophage T4 Dda helicase. Steady-state kinetic parameters of unwinding catalyzed by Dda were determined by using PNA as a trapping strand. The substrate consisted of a partial duplex with 15 nt of single-stranded DNA and 15 bp. In the presence of 250 nM substrate and 1 nM Dda, the rate of unwinding in the presence of the DNA trapping strand was 0.30 nM s–1 whereas the rate was 1.34 nM s–1 in the presence of the PNA trapping strand. PNA prevents reannealing of single-stranded DNA products, but does not sequester the helicase. This assay will prove useful in defining the complete kinetic mechanism for unwinding of oligonucleotide substrates by this helicase.  相似文献   

12.
13.
T4 phage polynucleotide kinase (PNK) displays 5′-hydroxyl kinase, 3′-phosphatase and 2′,3′-cyclic phosphodiesterase activities. The enzyme phosphorylates the 5′ hydroxyl termini of a wide variety of nucleic acid substrates, a behavior studied here through the determination of a series of crystal structures with single-stranded (ss)DNA oligonucleotide substrates of various lengths and sequences. In these structures, the 5′ ribose hydroxyl is buried in the kinase active site in proper alignment for phosphoryl transfer. Depending on the ssDNA length, the first two or three nucleotide bases are well ordered. Numerous contacts are made both to the phosphoribosyl backbone and to the ordered bases. The position, side chain contacts and internucleotide stacking interactions of the ordered bases are strikingly different for a 5′-GT DNA end than for a 5′-TG end. The base preferences displayed at those positions by PNK are attributable to differences in the enzyme binding interactions and in the DNA conformation for each unique substrate molecule.  相似文献   

14.
In this study, we use single-stranded DNA (oligo-dT) lattices that have been position-specifically labeled with monomer or dimer 2-aminopurine (2-AP) probes to map the local interactions of the DNA bases with the nucleic acid binding cleft of gp32, the single-stranded binding (ssb) protein of bacteriophage T4. Three complementary spectroscopic approaches are used to characterize these local interactions of the probes with nearby nucleotide bases and amino acid residues at varying levels of effective protein binding cooperativity, as manipulated by changing lattice length. These include: (i) examining local quenching and enhancing effects on the fluorescence spectra of monomer 2-AP probes at each position within the cleft; (ii) using acrylamide as a dynamic-quenching additive to measure solvent access to monomer 2-AP probes at each ssDNA position; and (iii) employing circular dichroism spectra to characterize changes in exciton coupling within 2-AP dimer probes at specific ssDNA positions within the protein cleft. The results are interpreted in part by what we know about the topology of the binding cleft from crystallographic studies of the DNA binding domain of gp32 and provide additional insights into how gp32 can manipulate the ssDNA chain at various steps of DNA replication and other processes of genome expression.  相似文献   

15.
HhaI DNA methyltransferase flips the inner cytosine in the recognition sequence 5'-GCGC-3' out of the DNA helix and into the catalytic site for methylation. To identify intermediate states on the base-flipping pathway, affinity photo-crosslinking experiments were performed with synthetic dodecamer duplexes containing modified bases 2-thiothymine (2sT) or 4-thiothymine (4sT) at the target base position. Here we show that the DNA strand containing 2sT, but not 4sT, covalently cross-links to the HhaI methyltransferase upon irradiation at 340-360 nm.  相似文献   

16.
We describe the synthesis of peptide nucleic acid (PNA)-titanium dioxide (TiO2) nanoconjugates and several novel methods developed to investigate the DNA hybridization behaviors of these constructs. PNAs are synthetic DNA analogs resistant to degradation by cellular enzymes that hybridize to single-stranded DNA (ssDNA) with higher affinity than DNA oligonucleotides, invade double-stranded DNA (dsDNA), and form different PNA/DNA complexes. Previously, we developed a DNA-TiO2 nanoconjugate capable of hybridizing to target DNA intracellularly in a sequence-specific manner with the ability to cleave DNA when excited by electromagnetic radiation but susceptible to degradation that may lower its intracellular targeting efficiency and retention time. PNA-TiO2 nanoconjugates described in the current article hybridize to target ssDNA, oligonucleotide dsDNA, and supercoiled plasmid DNA under physiological-like ionic and temperature conditions, enabling rapid, inexpensive, sequence-specific concentration of nucleic acids in vitro. When modified by the addition of imaging agents or peptides, hybridization capabilities of PNA-TiO2 nanoconjugates are enhanced, providing essential benefits for numerous in vitro and in vivo applications. The series of experiments shown here could not be done with either TiO2-DNA nanoconjugates or PNAs alone, and the novel methods developed will benefit studies of numerous other nanoconjugate systems.  相似文献   

17.
Brachman EE  Kmiec EB 《Genetics》2003,163(2):527-538
Modified single-stranded DNA oligonucleotides have been used to direct base changes in the CYC1 gene of Saccharomyces cerevisiae. In this process, the oligonucleotide is believed to hybridize to the target site through the action of a DNA recombinase and, once bound, DNA repair enzymes act to excise the nucleotide, replace it, and revert the gene to wild-type status. Nucleotide exchange exhibits a strand bias as, in most cases, a higher level of base reversal appears in cells in which the oligonucleotide is designed to hybridize to the nontemplate strand. But, in one case, a higher level was observed when an oligonucleotide complementary to the transcribed strand was used. Mutant haploid and diploid strains are reverted to wild type at this locus with approximately the same frequency and all strains take up the oligonucleotide with approximately equal efficiency. Some repair preference for certain base mismatches was observed; for example, T/T and C/C mispairs exhibited the highest degree of reactivity. Finally, we demonstrate that proteins involved in DNA pairing can enhance the repair activity up to 22-fold, while others affect the reaction minimally. Taken together, these results confirm the importance and versatility of yeast as a model system to elucidate the factors regulating the frequency of nucleotide exchange directed by oligonucleotides.  相似文献   

18.
By combining Ce(IV)/EDTA with two pseudo-complementary peptide nucleic acids (pcPNAs), both strands in double-stranded DNA were site-selectively hydrolyzed at the target site. Either plasmid DNA (4361 bp) or its linearized form was used as the substrate. When two pcPNAs invaded into the double-stranded DNA, only the designated portion in each of the two strands was free from Watson-Crick base pairing with the counterpart DNA or the pcPNA. Upon the treatment of this invasion complex with Ce(IV)/EDTA at 37 degrees C and pH 7.0, both of these single-stranded portions were selectively hydrolyzed at the designated site, resulting in the site-selective two-strand scission of the double-stranded DNA. Furthermore, the hydrolytic scission products were successfully connected with foreign double-stranded DNA by using ligase. The potential of these artificial systems for manipulation of huge DNA has been indicated.  相似文献   

19.
Brukner I  Tremblay GA  Paquin B 《BioTechniques》2002,33(4):874-6, 878, 880 passim
Here we describe a process for the generation of oligonucleotide libraries representative of a given nucleic acid. Starting from at random pool of DNA oligonucleotides, the technique selects only those that hybridize to the nucleic acid template. This selection yields a highly specific library that represents an oligonucleotide image of the chosen template. The novel quality of this approach is the generation of amplifiable oligonucleotide probes that are of unique length and are easily subjected to differential selection. Here we apply this technique to produce different genomic oligonucleotide libraries and show that these genomic oligonucleotide libraries do not cross-hybridize. Differential selection of these genomic oligonucleotide libraries produces oligonucleotides that can be used in the identification, characterzation, and isolation of nucleic acids.  相似文献   

20.
One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号