首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain metabolism and intracellular pH were studied during and after episodes of incomplete cerebral ischaemia in lambs under sodium pentobarbitone anaesthesia. 31P and 1H magnetic resonance spectroscopy was used to monitor brain pHi and brain concentrations of inorganic phosphate (Pi), phosphocreatine (PCr), beta-nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of arterio-cerebral venous concentration differences (AVDs) for oxygen, glucose, and lactate. Cerebral ischaemia was induced by a combination of bilateral carotid clamping and hypotension, and the acute effects of systemic administration of glucose and sodium bicarbonate were examined. The molar ratio of glucose to oxygen uptake by the brain (6G/O2) increased above unity during cerebral ischaemia. Statistically significant AVDs for lactate were not observed. Cerebral ischaemia was associated with a reduction in brain pHi PCr/Pi ratio, and an increase in brain lactate. No effect of arterial plasma glucose on brain lactate concentration or brain pHi was evident during cerebral ischaemia or in the postischaemic period. Administration of sodium bicarbonate systemically in the postischaemic period was associated with a rise in arterial and brain tissue PCO2. A fall in brain pHi occurred which was attributable in part to coincidental brain lactate accumulation. The increase in brain lactate measured by 1H nuclear magnetic resonance in vivo during ischaemia was insufficient to account for the change in buffer base calculated to have occurred from previous estimates of brain buffering capacity.  相似文献   

2.
Brain metabolism and intracellular pH were studied during and after episodes of ischaemia and hypoxia-ischaemia in lambs anaesthetised with sodium pentobarbitone. 31P and 1H magnetic resonance spectroscopy methods were used to monitor brain pHi and brain concentrations of Pi, phosphocreatine (PCr), beta--nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of cerebral blood flow and cerebral oxygen and glucose consumption. Cerebral ischaemia sufficient to reduce oxygen delivery to 75% of control values was associated with a fall in brain pHi and increase in brain Pi. Progressively severe hypoxia-ischaemia was associated with a progressive fall in brain pHi, PCr, and beta NTP and increase in brain Pi. In two animals the increase in brain lactate during hypoxia-ischaemia measured by 1H nuclear magnetic resonance (NMR) could be quantitatively accounted for by the increased net uptake of glucose by the brain in relation to oxygen, but was insufficient to account for the concomitant acidosis according to previous estimates of brain buffering capacity. In four animals brain pHi, PCr, Pi, and beta NTP had returned to normal 1 h after the hypoxic-ischaemic episode. In one animal brain pHi had reverted to normal at a time when 1H NMR indicated persistent elevation of brain lactate.  相似文献   

3.
Abstract— Seven-day-old rats were injected intraperitoneally with l -phenylalanine (1 g/kg) and the time course of brain polyribosome disaggregation and changes in brain levels of phenylalanine, tryptophan and tyrosine were determined. Disaggregation of brain polyribosomes preceded the increase in levels of phenylalanine in brain, and followed the same time course as depletion of tryptophan from brain. The effects of several metabolites of phenylalanine (which are formed in phenylketonuria) on protein synthesis in vitro was determined for brain and liver systems. None of the compounds tested was inhibitory at concentrations below 10 mM and in all cases hepatic protein synthesis was more sensitive to inhibition than was the corresponding system from brain. Ribosomal dimers, formed in brain after injection of phenylalanine, were incapable of supporting high levels of protein synthesis in vitro, a finding that suggested that the inhibition of protein synthesis in vitro in cell-free systems of brain tissue after injection of phenylalanine into young rats was mediated by disaggregation of brain polyribosomes associated with tryptophan deficiency in brain.  相似文献   

4.
In previous studies from this laboratory it was found that dibutanoylmorphine (DBM) was more potent than morphine as an analgesic in rats and that it was less active than acetyl esters of morphine on behaviour. As DBM is a morphine prodrug, the aim of this work was to determine if rat brain homogenates were capable of deacylating DBM and monobutanoylmorphine (MBM) and to determine relative proportions of parent drug to metabolites in the brain in vivo. In 10% (w/v) brain homogenates, DBM was eliminated with a half-life of about 70 min (corrected for dilution), while MBM was eliminated 10 times as quickly. DBM and its metabolites were found in both blood and brain as early as 1 min after i.v. administration of DBM. After 5 min, the predominant form in blood was MBM and in brain it was DBM. Thus, rat brain possesses the capacity to metabolize DBM by deesterification and the parent drug, MBM, and morphine were found in blood and brain in vivo.  相似文献   

5.
The effect of UVC irradiation was investigated on a model of brain cancer and a model of experimental brain metastasis. For the brain cancer model, brain cancer cells were injected stereotactically into the brain. For the brain metastasis model, lung cancer cells were injected intra‐carotidally or stereotactically. The U87 human glioma cell line was used for the brain cancer model, and the Lewis lung carcinoma (LLC) was used for the experimental brain metastasis model. Both cancer cell types were labeled with GFP in the nucleus and RFP in the cytoplasm. A craniotomy open window was used to image single cancer cells in the brain. This double labeling of the cancer cells with GFP and RFP enabled apoptosis of single cells to be imaged at the subcellular level through the craniotomy open window. UVC irradiation, beamed through the craniotomy open window, induced apoptosis in the cancer cells. UVC irradiation was effective on LLC and significantly extended survival of the mice with experimental brain metastasis. In contrast, the U87 glioma was relatively resistant to UVC irradiation. The results of this study suggest the use of UVC for treatment of superficial brain cancer or metastasis. J. Cell. Biochem. 114: 428–434, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Regional brain glucose use was measured in rats with streptozotocin-induced diabetes (65 mg/kg intravenously) of 1 or 4 weeks duration, by using [6-14C]glucose and quantitative autoradiography. The concentrations of several metabolites were measured in plasma and brain. Results were compared with those from normal untreated rats. Glucose concentrations were increased in both plasma and brain, to similar degrees in both diabetic groups. Plasma ketone-body concentrations were 0.25, 1.0, and 3.15 mumol/ml in the control, 1-week and 4-week groups respectively (sum of acetoacetate and 3-hydroxybutyrate). Glucose use was increased throughout the brain (differences were statistically significant in 55 of 59 brain areas) after 1 week of diabetes, with an increase of 25% for the brain as a whole. In contrast, normal rates were found throughout the brain after 4 weeks of diabetes. None of the brain areas was affected significantly differently from the others, in either diabetic group. There was no significant loss of 14C as lactate or pyruvate during the experimental period, nor was there any indication of net production of lactate in any of the groups. Other methodological considerations that could have affected the results obtained in the diabetic rats were likewise ruled out. Because the ketone bodies are expected to supplement glucose as a metabolic fuel for the brain, our results indicate that brain energy consumption is increased during streptozotocin-diabetes.  相似文献   

7.
Inhibition of cholinesterase (ChE) activity produced by a single acute intraperitoneal administration of dimethoate was studied in the wood mouse, Apodemus sylvaticus, and the common shrew, Sorex araneus, under laboratory conditions. ChE values from serum and whole blood were compared with those obtained from brain in order to obtain a non-destructive tool for predicting the severity of brain acetylcholinesterase (AChE) inhibition. In addition, serum and brain inhibition following oral exposure to dimethoate was also measured in the wood mouse. Normal ChE activity was higher in the brain and whole blood of the shrews than in wood mice. There was no difference between species in serum ChE activity. Exposure to dimethoate caused a dose-dependent reduction in ChE activity and there was a significant recovery in activity with increasing time after administration. In both species, serum and whole blood were more sensitive than brain for revealing organophosphate-induced ChE inhibition and serum was more sensitive than whole blood. Statistically significant relationships were defined between whole blood and brain ChE activity and between serum and brain ChE activity. Compared with serum, whole blood ChE activity was the more accurate predictor of brain AChE levels. The relationships between brain and serum ChE activity did not appear to be affected by the route of administration of the pesticide.  相似文献   

8.
The target size of neurotoxic esterase (NTE), the putative target site for the initiation of organophosphorus-compound-induced delayed neurotoxicity, and acetylcholinesterase (AChE) from hen brain were examined by determining the rate at which the activities of the esterases were destroyed by ionizing irradiation. Samples of hen brain were prepared by slowly drying a microsomal preparation under vacuum. The dried samples were then irradiated with electrons from a 1 MeV Van de Graaff generator. The doses ranged from 0 to 28 Mrad. The radiation doses were calibrated by the rate of inactivation of T1-bacteriophage plaque induction. Following the irradiation procedure, the samples were resuspended in buffer and enzymic activity was measured. The target size of NTE from hen brain was determined to be about 105 kDa, whereas hen brain AChE was found to have a target size of about 53 kDa. The target size of NTE was found to be similar in experiments with rat brain and cat brain. In addition, commercial preparations of electric-eel electric-organ AChE and horse serum butyrylcholinesterase were found to have target sizes that were identical with each other, and also were very similar to that of AChE from hen brain.  相似文献   

9.
1. The levels of AFP and albumin in rat brain at birth were 77 and 340 micrograms per g of tissue, respectively. These levels quickly dropped with age. AFP was undetectable in 20 days brain extracts whereas 30 micrograms of albumin per g of brain were still measured. 2. AFP from brain and serum were identical by immunodiffusion, electrophoresis and immuno-affinoelectrophoresis with free Concanavalin A. 3. No in vitro synthesis of AFP and albumin in the postnatal brain was observed. However, the total amount of AFP in the developing rat brain increases from birth to 4-5 days post-partum.  相似文献   

10.
Finland was the first country in which brain death was legally accepted. Since 1975, 37 cases of brain death had been recorded in a university hospital in Finland, and these were reviewed. The cause for brain death was intracranial bleeding in 32 cases, other cerebrovascular disorder in two, and intracranial neoplasm in three. In 21 brain death was diagnosed clinically. In 16 cases confirmatory investigations (electroencephalography, cerebral angiography) were needed. After brain death had been established artificial support was withdrawn in 15 patients and organ transplantation was carried out in 10. In 12 patients, however, diagnosis of brain death did not influence management, though the heart stopped beating on average 25 hours after diagnosis. The Finnish criteria for brain death seem to be reliable and suitable for routine use.  相似文献   

11.
《Biomarkers》2013,18(3):202-207
Abstract

Inhibition of cholinesterase (ChE) activity produced by a single acute intraperitoneal administration of dimethoate was studied in the wood mouse, Apodemus sylvaticus, and the common shrew, Sorex araneus, under laboratory conditions. ChE values from serum and whole blood were compared with those obtained from brain in order to obtain a non-destructive tool for predicting the severity of brain acetylcholinesterase (AChE) inhibition. In addition, serum and brain inhibition following oral exposure to dimethoate was also measured in the wood mouse. Normal ChE activity was higher in the brain and whole blood of the shrews than in wood mice. There was no difference between species in serum ChE activity. Exposure to dimethoate caused a dose-dependent reduction in ChE activity and there was a significant recovery in activity with increasing time after administration. In both species, serum and whole blood were more sensitive than brain for revealing organophosphate-induced ChE inhibition and serum was more sensitive than whole blood. Statistically significant relationships were defined between whole blood and brain ChE activity and between serum and brain ChE activity. Compared with serum, whole blood ChE activity was the more accurate predictor of brain AChE levels. The relationships between brain and serum ChE activity did not appear to be affected by the route of administration of the pesticide.  相似文献   

12.
Formation of unesterified choline by rat brain   总被引:8,自引:0,他引:8  
Two preparations of rat brain (ischemic intact brain and homogenized whole brain) formed large amounts of unesterified (free) choline when incubated at 37 degrees C. The accumulation of choline was inhibited by microwave irradiation of brain, or by heating of brain to 50 degrees C, and was maximal at 37 degrees C at pH 7.4-8.5. Choline formation was only observed in subcellular fractions of brain that contained membranes. In homogenates of brain, choline accumulated at a rate exceeding 10 nmol/mg protein per h. There was a significant decrease in brain phosphatidylcholine concentration (of 50 nmol/mg protein) during incubation for 1 h at 37 degrees C. Concentrations of phosphocholine rose (by 2.3 nmol/mg protein), and concentrations of glycerophosphocholine and sphingomyelin did not change during this period. We used radiolabeled phospholipids to trace the fate of phosphatidylcholine and sphingomyelin during incubations of homogenates of brain. Phosphatidylcholine was degraded to form phosphocholine, glycerophosphocholine and free choline. No lysophosphatidylcholine accumulated. Sphingomyelin was degraded to form phosphocholine and a small amount of free choline. Magnesium ions stimulated choline production, while zinc ions were a potent inhibitor. Other divalent cations (calcium, manganese) had little effect on choline accumulation. ATP concentrations in brain homogenates were less than 5 nmol/mg protein (rapidly microwaved brain contained 27 nmol/mg protein). Addition of ATP or ADP to brain homogenates increased ATP concentrations and significantly inhibited choline accumulation. ATP diminished the formation of choline from added phosphatidylcholine, lysophosphatidylcholine, phosphocholine and glycerophosphocholine. The effects of ATP, zinc ion, or magnesium ion upon choline accumulation were not mediated by changes in the rates of utilization of choline for formation of phosphocholine or phosphatidylcholine. In summary, we showed that there was enhanced formation of choline when ATP concentrations within brain were low. This choline was derived, in part, from the degradation of phosphatidylcholine, and we suggest that phospholipase A activity was the primary initiator of choline release from this phospholipid.  相似文献   

13.
Cytomegalovirus (CMV) is the most significant infectious cause of brain disorders in humans involving the developing brain. It is hypothesized that the brain disorders occur after recurrent reactivation of the latent infection in some kinds of cells in the brains. In order to test this hypothesis, we examined the reactivation of latent murine CMV (MCMV) infection in the mouse brain by transfer to brain slice culture. We infected neonatal and young adult mice intracerebrally with recombinant MCMV in which the lacZ gene was inserted into a late gene. The brains were removed 6 months after infection and used to prepare brain slices that were then cultured for up to 4 weeks. Reactivation of latent infection in the brains was detected by beta-galactosidase (beta-Gal) staining to assess beta-galactosidase expression. Viral replication was also confirmed by the plaque assay. Reactivation was observed in about 75% of the mice infected during the neonatal period 6 months after infection. Unexpectedly, reactivation was also observed in 75% of mice infected as young adults, although the infection ratio in the brain slices was significantly lower than that in neonatally infected mice. Beta-Gal-positive cells were observed in marginal regions of the brains or immature neural cells in the ventricular walls. Immunohistochemical staining showed that the beta-Gal-positive reactivated cells were neural stem or progenitor cells. These results suggest that brain disorders may occur long after infection by reactivation of latent infection in the immature neural cells in the brain.  相似文献   

14.
Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental stages using three-dimensional (3D) geometric morphometric analysis and the growth rate of brain regions was evaluated to explore post-hatching morphological changes. Microscopic MRI (μMRI) was used to acquire in vivo data from living and post-mortem chicken brains. The telencephalon rotates caudoventrally during growth. This change in shape leads to a relative caudodorsal rotation of the cerebellum and myelencephalon. In addition, all brain regions elongate rostrocaudally and this leads to a more slender brain shape. The growth rates of each brain region were constant and the slopes from the growth formula were parallel. The dominant pattern of ontogenetic shape change corresponded with interspecific shape changes due to increasing brain size. That is, the interspecific and ontogenetic changes in brain shape due to increased size have similar patterns. Although the shape of the brain and each brain region changed considerably, the volume ratio of each brain region did not change. This suggests that the brain can change its shape after completing functional differentiation of the brain regions. Moreover, these results show that consideration of ontogenetic changes in brain shape is necessary for an accurate assessment of brain morphology in paleontological studies.  相似文献   

15.
Glutamate dehydrogenase (GDH) enzyme is recently being reported to be present in the nucleus in addition to the mitochondria in a number of organisms. Here we investigated the distribution of GDH in liver and brain tissues of chicken. Polyclonal anti-GDH antibody against bovine GDH was raised by us, which was later shown to be immunereactive to chicken GDH. The nuclear and the mitochondrial extracts from liver and brain tissues of chicken were made as described. By quantitative immunoreactivity, it was revealed that the nuclear GDH expressed in comparable efficiencies in the liver and brain. However, the activity of the brain nuclear GDH was lower than the liver counterparts. The allosteric regulation pattern for the brain nuclear GDH was also different from the other corresponding fractions and it was speculated that the brain nuclear GDH was inactive. The liver and brain nuclear GDH were purified to homogeneity and comparison of specific activities of both the GDH ruled out the existence of any inhibitor in the brain nuclear GDH. It is hypothesized that the inactivation of the brain nuclear GDH in chicken could be due to some already known posttranslational modification. The present report throws light on the differential regulation pattern of GDH enzyme.  相似文献   

16.
In the process of drug discovery, brain and plasma measurements of new chemical entities in rodents are of interest, particularly when the target receptors are in the brain. Brain-to-plasma ratios (B/P) obtained from a rodent pharmacokinetic assay are useful in helping determine which compounds are brain penetrant. The study reported here was performed to determine whether whole-body saline perfusion for complete blood removal was required to accurately measure brain tissue compound concentrations. Diazepam was used as a positive control since it is highly brain penetrant. Compound A was used as a negative control since it had known poor brain penetration. After intravenous dosing with either diazepam or compound A, rats were anesthetized and blood was collected, then the brain was removed following no perfusion or whole-body perfusion with saline. The analytes described (compound A, diazepam, and the internal standard) were recovered from plasma or brain homogenate by use of protein precipitation, and were subsequently analyzed by use of liquid chromatography/tandem mass spectrometry (LC/MS/MS). The B/P values determined by use of LC-MS were not significantly different in perfused vs. non-perfused rats (P > or = 0.05). This approach (whole brain collected from non-perfused male rats) is an attractive alternative over brain penetration studies of perfused rats, since it has markedly reduced the technical time and potential for pain and distress required for generating B/P data due to elimination of the requirement for anesthesia and surgical preparation of animals.  相似文献   

17.
用差异显示法从人胎脑基因文库分离一个编码序列   总被引:1,自引:0,他引:1  
人18周、22周胎儿脑、肝肾组织总m RNA 用DDRT-PCR显示出差异的条带,回收胎脑和肝肾特异性表达的487条电泳条带.其中某些条带用3种组织的cDNA 探针作点杂交,筛选只对胎儿脑总呈阳性的DNA 片段.以其中某一条带DNA 为探针,从胎儿脑cDNA 文库筛选阳性克隆,得到GC58.经Northern 杂交和DNA 测序,表明它是人脑表达的序列,与数据库中KIAA0515有同源性,并编码一个有274个氨基酸的蛋白质,该蛋白质序列尚未见报道.探讨了DDRT-PCR的条件和假阳性问题.  相似文献   

18.
Eighteen weanling male Wistar rats with brain gliomas were divided into three groups, which received 0., 2.0, 5.0 ppm selenium (Se) in their drinking water. The accumulation and retention of selenium in the brain bearing tumor was investigated. Significantly higher concentrations of Se were observed in tumor tissue than normal brain tissue after exposure to sodium selenite. Tumors were observed in the 2.0 Μg/g selenium group. The difference in selenium concentration between the tumor tissue and contralateral normal brain tissue was not influenced by the weight of brain or body, and water consumption. We observed that selenium accumulated in tumor tissue more than in normal brain tissue.  相似文献   

19.
A method was devised for reproducing anesthetic concentrations of halothane in slice and membrane preparations of rat brain in vitro. Rats were anesthetized with varying concentrations of halothane, responsiveness was tested, and brain halothane content was determined by heptane extraction and gas chromatography. The inspired concentration of halothane at which half of all animals were unresponsive was 1.05%. At 1.25% halothane, all animals were unresponsive and brain halothane was determined to be 41 +/- 1.3 nmol/mg lipid. No significant differences in halothane concentration between whole brain and a variety of brain regions were detected. To obtain similar concentrations in vitro, membranes or slices of cerebral cortex were incubated in Krebs-Ringer bicarbonate buffer (KRB) that had been preequilibrated with anesthetic. Halothane equilibrated rapidly with the buffer and the tissues. The partition coefficient between gas and KRB was found to be 0.78, and between brain slices and KRB approximately 12. Slightly lower gas concentrations were necessary in vitro than in vivo to obtain the same tissue levels of anesthetic. Using this method, it was shown that there was no effect of anesthetic concentrations of halothane on the uptake of [3H]norepinephrine or [3H]choline into slices of rat cerebral cortex.  相似文献   

20.
Brain ankyrin. Purification of a 72,000 Mr spectrin-binding domain   总被引:19,自引:0,他引:19  
Polypeptides of Mr = 190,000-220,000 that cross-react with erythrocyte ankyrin were detected in immunoblots of membranes from pig lens, pig brain, and rat liver. The cross-reacting polypeptides from brain were cleaved by chymotrypsin to fragments of Mr = 95,000 and 72,000 which are the same size as fragments obtained with erythrocyte ankyrin. The brain 72,000 Mr fragment associated with erythrocyte spectrin, and the binding occurred at the same site as that of erythrocyte ankyrin 72,000 Mr fragment since (a) brain 72,000 Mr fragment was adsorbed to erythrocyte spectrin-agarose and (b) 125I-labeled erythrocyte spectrin bound to brain 72,000 Mr fragment following transfer of the fragment from a sodium dodecyl sulfate gel to nitrocellulose paper, and this binding was displaced by erythrocyte ankyrin 72,000 Mr fragment. Brain 72,000 Mr fragment was purified about 400-fold by selective extraction and by continuous chromatography on columns attached in series containing DEAE-cellulose followed by erythrocyte spectrin coupled to agarose, and finally hydroxylapatite. The brain 72,000 Mr fragment was not derived from contaminating erythrocytes since peptide maps of pig brain and pig erythrocyte 72,000 Mr fragments were distinct. The amount of brain 72,000 Mr fragment was estimated as 0.28% of membrane protein or 39 pmol/mg based on radioimmunoassay with 125I-labeled brain fragment and antibody against erythrocyte ankyrin. Brain spectrin tetramer was present in about the same number of copies (30 pmol/mg of membrane protein) based on densitometry of Coomassie blue-stained sodium dodecyl sulfate gels. The binding site on brain spectrin for both brain and erythrocyte ankyrin 72,000 Mr fragments was localized by electron microscopy to the midregion of spectrin tetramers about 90 nM from the near end and 110 nM from the far end. These studies demonstrate the presence in brain membranes of a protein closely related to erythrocyte ankyrin, and are consistent with a function of the brain ankyrin as a membrane attachment site for brain spectrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号