首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Kenny PJ 《Neuron》2011,69(4):664-679
Food is consumed in order to maintain energy balance at homeostatic levels. In addition, palatable food is also consumed for its hedonic properties independent of energy status. Such reward-related consumption can result in caloric intake exceeding requirements and is considered a major culprit in the rapidly increasing rates of obesity in developed countries. Compared with homeostatic mechanisms of feeding, much less is known about how hedonic systems in brain influence food intake. Intriguingly, excessive consumption of palatable food can trigger neuroadaptive responses in brain reward circuitries similar to drugs of abuse. Furthermore, similar genetic vulnerabilities in brain reward systems can increase predisposition to drug addiction and obesity. Here, recent advances in our understanding of the brain circuitries that regulate hedonic aspects of feeding behavior will be reviewed. Also, emerging evidence suggesting that obesity and drug addiction may share common hedonic mechanisms will also be considered.  相似文献   

2.
Taste is an early stage in food and drink selection for most animals [1, 2]. Detecting sweetness indicates the presence of sugar and possible caloric content. However, sweet taste can be an unreliable predictor of nutrient value because some sugars cannot be metabolized. In addition, discrete sugars are detected by the same sensory neurons in the mammalian [3] and insect [4, 5] gustatory systems, making it difficult for animals to readily distinguish the identity of different sugars using taste alone [6-8]. Here we used an appetitive memory assay in Drosophila [9-11] to investigate the contribution of palatability and relative nutritional value of sugars to memory formation. We show that palatability and nutrient value both contribute to reinforcement of appetitive memory. Nonnutritious sugars formed less robust memory that could be augmented by supplementing with a tasteless but nutritious substance. Nutrient information is conveyed to the brain within minutes of training, when it can be used to guide expression of a sugar-preference memory. Therefore, flies can rapidly learn to discriminate between sugars using a postingestive reward evaluation system, and they preferentially remember nutritious sugars.  相似文献   

3.
Taste is unique among sensory systems in its innate association with mechanisms of reward and aversion in addition to its recognition of quality, e.g., sucrose is sweet and preferable, and quinine is bitter and aversive. Taste information is sent to the reward system and feeding center via the prefrontal cortices such as the mediodorsal and ventrolateral prefrontal cortices in rodents and the orbitofrontal cortex in primates. The amygdala, which receives taste inputs, also influences reward and feeding. In terms of neuroactive substances, palatability is closely related to benzodiazepine derivatives and beta-endorphin, both of which facilitate consumption of food and fluid. The reward system contains the ventral tegmental area, nucleus accumbens and ventral pallidum and finally sends information to the lateral hypothalamic area, the feeding center. The dopaminergic system originating from the ventral tegmental area mediates the motivation to consume palatable food. The actual ingestive behavior is promoted by the orexigenic neuropeptides from the hypothalamus. Even palatable food can become aversive and avoided as a consequence of a postingestional unpleasant experience such as malaise. The neural mechanisms of this conditioned taste aversion will also be elucidated.  相似文献   

4.
Overeating is believed to result when the appetitive motivation to consume palatable food exceeds an individual's capacity for inhibitory control of eating. This hypothesis was supported in recent studies involving predominantly normal weight women, but has not been tested in obese populations. The current study tested the interaction between food reward sensitivity and inhibitory control in predicting palatable food intake among energy-replete overweight and obese women (N = 62). Sensitivity to palatable food reward was measured with the Power of Food Scale. Inhibitory control was assessed with a computerized choice task that captures the tendency to discount large delayed rewards relative to smaller immediate rewards. Participants completed an eating in the absence of hunger protocol in which homeostatic energy needs were eliminated with a bland preload of plain oatmeal, followed by a bogus laboratory taste test of palatable and bland snacks. The interaction between food reward sensitivity and inhibitory control was a significant predictor of palatable food intake in regression analyses controlling for BMI and the amount of preload consumed. Probing this interaction indicated that higher food reward sensitivity predicted greater palatable food intake at low levels of inhibitory control, but was not associated with intake at high levels of inhibitory control. As expected, no associations were found in a similar regression analysis predicting intake of bland foods. Findings support a neurobehavioral model of eating behavior in which sensitivity to palatable food reward drives overeating only when accompanied by insufficient inhibitory control. Strengthening inhibitory control could enhance weight management programs.  相似文献   

5.
The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5 -/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5 -/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5 -/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5 -/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance.  相似文献   

6.
The procurement and consumption of palatable, calorie‐dense foods is influenced by the nutritional and hedonic value of foods. Although many factors can influence the control over behavior by foods rich in sugar and fat, emerging evidence indicates that biological sex may play a particularly crucial role in the types of foods individuals seek out, as well as the level of motivation individuals will exert to obtain those foods. However, a systematic investigation of food‐seeking and consumption that disentangles the effects of the major sex‐biasing factors, including sex chromosome complement and organizational and activational effects of sex hormones, has yet to be conducted. Using the four core genotypes mouse model system, we separated and quantified the effects of sex chromosome complement and gonadal sex on consumption of and motivation to obtain a highly palatable solution [sweetened condensed milk (SCM)]. Gonadectomized mice with an XY sex chromosome complement, compared with those with two X chromosomes, independent of gonadal sex, appeared to be more sensitive to the reward value of the SCM solution and were more motivated to expend effort to obtain it, as evidenced by their dramatically greater expended effort in an instrumental task with progressively larger response‐to‐reward ratios. Gonadal sex independently affected free consumption of the solution but not motivation to obtain it. These data indicate that gonadal and chromosomal sex effects independently influence reward‐related behaviors, contributing to sexually dimorphic patterns of behavior related to the pursuit and consumption of rewards.  相似文献   

7.
Chronic intake of high-fat (HF) diet is known to alter brain neurotransmitter systems that participate in the central regulation of food intake. Dopamine (DA) system changes in response to HF diet have been observed in the hypothalamus, important in the homeostatic control of food intake, as well as within the central reward circuitry [ventral tegmental area (VTA), nucleus accumbens (NAc), and pre-frontal cortex (PFC)], critical for coding the rewarding properties of palatable food and important in hedonically driven feeding behavior. Using a mouse model of diet-induced obesity (DIO), significant alterations in the expression of DA-related genes were documented in adult animals, and the general pattern of gene expression changes was opposite within the hypothalamus versus the reward circuitry (increased vs. decreased, respectively). Differential DNA methylation was identified within the promoter regions of tyrosine hydroxylase (TH) and dopamine transporter (DAT), and the pattern of this response was consistent with the pattern of gene expression. Behaviors consistent with increased hypothalamic DA and decreased reward circuitry DA were observed. These data identify differential DNA methylation as an epigenetic mechanism linking the chronic intake of HF diet with altered DA-related gene expression, and this response varies by brain region and DNA sequence.  相似文献   

8.
Ghrelin is an orexigenic peptide that acts within the central nervous system to stimulate appetite and food intake via the growth hormone secretagogue receptor (GHS-R). It has been hypothesized that ghrelin modulates food intake in part by stimulating reward pathways in the brain and potentially stimulating the intake of palatable foods. Here we examined the effects of chronic ghrelin administration in the ventral tegmental area (VTA) via osmotic minipumps on 1) ad libitum food intake and bodyweight; 2) macronutrient preference; and 3) motivation to obtain chocolate pellets. In the first study rats receiving ghrelin into the VTA showed a dose-dependent increase in the intake of regular chow, also resulting in increased body weight gain. A second study revealed that intra-VTA delivery of the ghrelin receptor antagonist [Lys-3]-GHRP-6 selectively reduced caloric intake of high-fat chow and reduced body weight gain relative to control and ghrelin treated rats. The third study demonstrated that food restricted rats worked harder for food pellets when infused with ghrelin than when infused with vehicle or ghrelin receptor antagonist treated rats. Finally, rats trained on an FR1 schedule but returned to ad libitum during ghrelin infusion, responded at 86% of baseline levels when they were not hungry, whereas saline infused rats responded at 36% of baseline. Together, these results suggest that ghrelin acts directly on the VTA to increase preference for and motivation to obtain highly-palatable food.  相似文献   

9.
《Hormones and behavior》2012,61(5):572-580
Ghrelin is an orexigenic peptide that acts within the central nervous system to stimulate appetite and food intake via the growth hormone secretagogue receptor (GHS-R). It has been hypothesized that ghrelin modulates food intake in part by stimulating reward pathways in the brain and potentially stimulating the intake of palatable foods. Here we examined the effects of chronic ghrelin administration in the ventral tegmental area (VTA) via osmotic minipumps on 1) ad libitum food intake and bodyweight; 2) macronutrient preference; and 3) motivation to obtain chocolate pellets. In the first study rats receiving ghrelin into the VTA showed a dose-dependent increase in the intake of regular chow, also resulting in increased body weight gain. A second study revealed that intra-VTA delivery of the ghrelin receptor antagonist [Lys-3]-GHRP-6 selectively reduced caloric intake of high-fat chow and reduced body weight gain relative to control and ghrelin treated rats. The third study demonstrated that food restricted rats worked harder for food pellets when infused with ghrelin than when infused with vehicle or ghrelin receptor antagonist treated rats. Finally, rats trained on an FR1 schedule but returned to ad libitum during ghrelin infusion, responded at 86% of baseline levels when they were not hungry, whereas saline infused rats responded at 36% of baseline. Together, these results suggest that ghrelin acts directly on the VTA to increase preference for and motivation to obtain highly-palatable food.  相似文献   

10.
Adolescence is associated with a dramatic increase in risky and impulsive behaviors that have been attributed to developmental differences in neural processing of rewards. In the present study, we sought to identify age differences in anticipation of absolute and relative rewards. To do so, we modified a commonly used monetary incentive delay (MID) task in order to examine brain activity to relative anticipated reward value (neural sensitivity to the value of a reward as a function of other available rewards). This design also made it possible to examine developmental differences in brain activation to absolute anticipated reward magnitude (the degree to which neural activity increases with increasing reward magnitude). While undergoing fMRI, 18 adolescents and 18 adult participants were presented with cues associated with different reward magnitudes. After the cue, participants responded to a target to win money on that trial. Presentation of cues was blocked such that two reward cues associated with $.20, $1.00, or $5.00 were in play on a given block. Thus, the relative value of the $1.00 reward varied depending on whether it was paired with a smaller or larger reward. Reflecting age differences in neural responses to relative anticipated reward (i.e., reference dependent processing), adults, but not adolescents, demonstrated greater activity to a $1 reward when it was the larger of the two available rewards. Adults also demonstrated a more linear increase in ventral striatal activity as a function of increasing absolute reward magnitude compared to adolescents. Additionally, reduced ventral striatal sensitivity to absolute anticipated reward (i.e., the difference in activity to medium versus small rewards) correlated with higher levels of trait Impulsivity. Thus, ventral striatal activity in anticipation of absolute and relative rewards develops with age. Absolute reward processing is also linked to individual differences in Impulsivity.  相似文献   

11.
Findings from our laboratory and others have demonstrated that the hormone insulin has chronic effects within the CNS to regulate energy homeostasis and to decrease brain reward function. In this study, we compared the acute action of insulin to decrease intake of a palatable food in two different behavioral tasks-progressive ratios sucrose self-administration and micro opioid-stimulated sucrose feeding-when administered into several insulin-receptive sites of the CNS. We tested insulin efficacy within the medial hypothalamic arcuate (ARC) and paraventricular (PVN) nuclei, the nucleus accumbens, and the ventral tegmental area. Administration of insulin at a dose that has no chronic effect on body weight (5 mU) into the ARC significantly suppressed sucrose self-administration (75+/-5% of paired control). However, although the mu opioid DAMGO, [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin acetate salt, stimulated sucrose intake at all four CNS sites, the ventral tegmental area was the only sensitive site for a direct effect of insulin to antagonize acute (60 min) micro opioid-stimulated sucrose feeding: sucrose intake was 53+/-8% of DAMGO-induced feeding, when insulin was coadministered with DAMGO. These findings demonstrate that free feeding of sucrose, and motivated work for sucrose, can be modulated within unique sites of the CNS reward circuitry. Further, they support the interpretation that adiposity signals, such as insulin, can decrease different aspects of ingestion of a palatable food, such as sucrose, in an anatomically specific manner.  相似文献   

12.
The neural control of feeding involves many neuromodulators, including the endogenous opioids that bind μ-opioid receptors (MORs). Injections of the MOR agonist, Damgo, into limbic and hypothalamic forebrain sites increase intake, particularly of palatable foods. Indeed, forebrain Damgo injections increase sucrose-elicited licking but reduce aversive responding (gaping) to quinine, suggesting that MOR activation may enhance taste palatability. A μ-opioid influence on taste reactivity has not been assessed in the brain stem. However, MORs are present in the first-order taste relay, the rostral nucleus of the solitary tract (rNST), and in the immediately subjacent reticular formation (RF), a region known to be essential for consummatory responses. Thus, to evaluate the consequences of rNST/dorsal RF Damgo in this region, we implanted rats with intraoral cannulas, electromyographic electrodes, and brain cannulas aimed at the ventral border of the rNST. Licking and gaping elicited with sucrose, water, and quinine were assessed before and after intramedullary Damgo and saline infusions. Damgo slowed the rate, increased the amplitude, and decreased the size of fluid-induced lick and gape bouts. In addition, the neutral stimulus water, which typically elicits licks, began to evoke gapes. Thus, the current results demonstrate that μ-opioid activation in the rNST/dorsal RF exerts complex effects on oromotor responding that contrast with forebrain effects and are more indicative of a suppressive, rather than a facilitatory effect on ingestion.  相似文献   

13.
Acamprosate suppresses alcohol intake and craving in recovering alcoholics; however, the central sites of its action are unclear. To approach this question, brain regions responsive to acamprosate were mapped using acamprosate microimplants targeted to brain reward and circadian areas implicated in alcohol dependence. mPer2 mutant mice with nonfunctional mPer2, a circadian clock gene that gates endogenous timekeeping, were included, owing to their high levels of ethanol intake and preference. Male wild-type (WT) and mPer2 mutant mice received free-choice (15%) ethanol/water for 3 wk. The ethanol was withdrawn for 3 wk and then reintroduced to facilitate relapse. Four days before ethanol reintroduction, mice received bilateral blank or acamprosate-containing microimplants releasing ~50 ng/day into reward [ventral tegmental (VTA), peduculopontine tegmentum (PPT), and nucleus accumbens (NA)] and circadian [intergeniculate leaflet (IGL) and suprachiasmatic nucleus (SCN)] areas. The hippocampus was also targeted. Circadian locomotor activity was measured throughout. Ethanol intake and preference were greater in mPer2 mutants than in wild-type (WT) mice (27 g·kg(-1)·day(-1) vs. 13 g·kg(-1)·day(-1) and 70% vs. 50%, respectively; both, P < 0.05). In WTs, acamprosate in all areas, except hippocampus, suppressed ethanol intake and preference (by 40-60%) during ethanol reintroduction. In mPer2 mutants, acamprosate in the VTA, PPT, and SCN suppressed ethanol intake and preference by 20-30%. These data are evidence that acamprosate's suppression of ethanol intake and preference are manifest through actions within major reward and circadian sites.  相似文献   

14.
Andrews ZB  Horvath TL 《Neuron》2008,57(6):806-808
Food palatability acts on the dopaminergic reward system to override homeostatic control; however, whether postingestive calorie load in the absence of taste affects this system remains unclear. In this issue of Neuron, de Araujo et al. show that mice lacking functional "sweet" taste receptors (trpm5-/-) develop a preference for sucrose by activating the mesolimbic dopamine-accumbal pathway, solely based on calorie load.  相似文献   

15.
The gastric-derived orexigenic peptide ghrelin affects brain circuits involved in energy balance as well as in reward. Indeed, ghrelin activates an important reward circuit involved in natural- as well as drug-induced reward, the cholinergic-dopaminergic reward link. It has been hypothesized that there is a common reward mechanism for alcohol and sweet substances in both animals and humans. Alcohol dependent individuals have higher craving for sweets than do healthy controls and the hedonic response to sweet taste may, at least in part, depend on genetic factors. Rat selectively bred for high sucrose intake have higher alcohol consumption than non-sucrose preferring rats and vice versa. In the present study a group of alcohol-consuming individuals selected from a population cohort was investigated for genetic variants of the ghrelin signalling system in relation to both their alcohol and sucrose consumption. Moreover, the effects of GHS-R1A antagonism on voluntary sucrose-intake and operant self-administration, as well as saccharin intake were investigated in preclinical studies using rodents. The effects of peripheral grelin administration on sucrose intake were also examined. Here we found associations with the ghrelin gene haplotypes and increased sucrose consumption, and a trend for the same association was seen in the high alcohol consumers. The preclinical data show that a GHS-R1A antagonist reduces the intake and self-administration of sucrose in rats as well as saccharin intake in mice. Further, ghrelin increases the intake of sucrose in rats. Collectively, our data provide a clear indication that the GHS-R1A antagonists reduces and ghrelin increases the intake of rewarding substances and hence, the central ghrelin signalling system provides a novel target for the development of drug strategies to treat addictive behaviours.  相似文献   

16.
Neural responses during anticipation of a primary taste reward   总被引:29,自引:0,他引:29  
The aim of this study was to determine the brain regions involved in anticipation of a primary taste reward and to compare these regions to those responding to the receipt of a taste reward. Using fMRI, we scanned human subjects who were presented with visual cues that signaled subsequent reinforcement with a pleasant sweet taste (1 M glucose), a moderately unpleasant salt taste (0.2 M saline), or a neutral taste. Expectation of a pleasant taste produced activation in dopaminergic midbrain, posterior dorsal amygdala, striatum, and orbitofrontal cortex (OFC). Apart from OFC, these regions were not activated by reward receipt. The findings indicate that when rewards are predictable, brain regions recruited during expectation are, in part, dissociable from areas responding to reward receipt.  相似文献   

17.
近年来,肥胖已成为全球亟待解决的重要公共卫生问题。越来越多的研究发现,食物奖赏在肥胖的形成与发展过程中发挥重要作用。最近的研究表明,由于能量过剩引发的代谢性炎症可能通过多种生理途径干扰正常的奖赏信号传递,从而促进肥胖的发展。基于这一观点,推测产生肥胖的原因可能与代谢性炎症诱导食物奖赏异常有关。因此,深入探讨肥胖、食物奖赏和代谢性炎症之间的关系,总结代谢性炎症诱导食物奖赏异常的可能机制,可为预防和治疗肥胖提供新的思路和理论支持。  相似文献   

18.
The gut/brain peptide, glucagon like peptide 1 (GLP-1), suppresses food intake by acting on receptors located in key energy balance regulating CNS areas, the hypothalamus or the hindbrain. Moreover, GLP-1 can reduce reward derived from food and motivation to obtain food by acting on its mesolimbic receptors. Together these data suggest a neuroanatomical segregation between homeostatic and reward effects of GLP-1. Here we aim to challenge this view and hypothesize that GLP-1 can regulate food reward behavior by acting directly on the hindbrain, the nucleus of the solitary tract (NTS), GLP-1 receptors (GLP-1R). Using two models of food reward, sucrose progressive ratio operant conditioning and conditioned place preference for food in rats, we show that intra-NTS microinjections of GLP-1 or Exendin-4, a stable analogue of GLP-1, inhibit food reward behavior. When the rats were given a choice between palatable food and chow, intra-NTS Exendin-4 treatment preferentially reduced intake of palatable food but not chow. However, chow intake and body weight were reduced by the NTS GLP-1R activation if chow was offered alone. The NTS GLP-1 activation did not alter general locomotor activity and did not induce nausea, measured by PICA. We further show that GLP-1 fibers are in close apposition to the NTS noradrenergic neurons, which were previously shown to provide a monosynaptic connection between the NTS and the mesolimbic system. Central GLP-1R activation also increased NTS expression of dopamine-β-hydroxylase, a key enzyme in noradrenaline synthesis, indicating a biological link between these two systems. Moreover, NTS GLP-1R activation altered the expression of dopamine-related genes in the ventral tegmental area. These data reveal a food reward-suppressing role of the NTS GLP-1R and indicate that the neurobiological targets underlying food reward control are not limited to the mesolimbic system, instead they are distributed throughout the CNS.  相似文献   

19.
The acknowledged importance of uncertainty in economic decision making has stimulated the search for neural signals that could influence learning and inform decision mechanisms. Current views distinguish two forms of uncertainty, namely risk and ambiguity, depending on whether the probability distributions of outcomes are known or unknown. Behavioural neurophysiological studies on dopamine neurons revealed a risk signal, which covaried with the standard deviation or variance of the magnitude of juice rewards and occurred separately from reward value coding. Human imaging studies identified similarly distinct risk signals for monetary rewards in the striatum and orbitofrontal cortex (OFC), thus fulfilling a requirement for the mean variance approach of economic decision theory. The orbitofrontal risk signal covaried with individual risk attitudes, possibly explaining individual differences in risk perception and risky decision making. Ambiguous gambles with incomplete probabilistic information induced stronger brain signals than risky gambles in OFC and amygdala, suggesting that the brain's reward system signals the partial lack of information. The brain can use the uncertainty signals to assess the uncertainty of rewards, influence learning, modulate the value of uncertain rewards and make appropriate behavioural choices between only partly known options.  相似文献   

20.
Due to the biological importance of sodium and its relative scarcity within many natural environments, ‘salt appetite’ has evolved whereby dietary salt is highly sought after and palatable when tasted. In addition to peripheral responses, salt depletion is detected within the brain via circumventricular organs and 11β-hydroxysteroid dehydrogenase type 2 (HSD2) neurons to increase salt appetite. Salt appetite is comprised of two main components. One component is the incentive salience or motivation for salt (i.e. how much salt is ‘wanted’). Incentive salience is dynamic and largely depends on internal homeostatic conditions in combination with the detection of relevant cues. It involves the mesolimbic system and structures such as the central amygdala, and opioid signalling within these regions can increase salt intake in rodents. A second key feature is the hedonic palatability of salt (i.e. how much it is ‘liked’) when it is tasted. After detection on the tongue, gustatory information passes through the brainstem nucleus of the solitary tract and thalamus, before being consciously detected within the gustatory cerebral cortex. The positive or negative hedonic value of this stimulus is also dynamic, and is encoded by a network including the nucleus accumbens, ventral pallidum, and lateral parabrachial nucleus. Opioid signalling within these areas can alter salt intake, and ‘liking’. The overconsumption of dietary salt likely contributes to hypertension and associated diseases, and hence further characterising the role played by opioid signalling has important implications for human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号