首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在生命体内,基因以及其它分子间相互作用形成复杂调控网络,生命过程都是以调控网络的形式存在,如从代谢通路网络到转录调控网络,从信号转导网络到蛋白质相互作用网络等等。因此,网络现象是生命现象的复杂本质和主要特征。本文系统地介绍了基于表达谱数据构建基因调控网络的布尔网络模型,线性模型,微分方程模型和贝叶斯网络模型,并对各种网络构建模型进行了深入的分析和总结。同时,文章从基因组序列信息、蛋白质相互作用信息和生物医学文献信息等方面讨论了基因调控网络方面构建的研究,这对从系统生物学水平揭示生命复杂机制具有重要的参考价值。  相似文献   

2.
3.
4.
Recent experimental advances facilitate the collection of time series data that indicate which genes in a cell are expressed. This information can be used to understand the genetic regulatory network that generates the data. Typically, Bayesian analysis approaches are applied which neglect the time series nature of the experimental data, have difficulty in determining the direction of causality, and do not perform well on networks with tight feedback. To address these problems, this paper presents a method to learn genetic network connectivity which exploits the time series nature of experimental data to achieve better causal predictions. This method first breaks up the data into bins. Next, it determines an initial set of potential influence vectors for each gene based upon the probability of the gene's expression increasing in the next time step. These vectors are then combined to form new vectors with better scores. Finally, these influence vectors are competed against each other to determine the final influence vector for each gene. The result is a directed graph representation of the genetic network's repression and activation connections. Results are reported for several synthetic networks with tight feedback showing significant improvements in recall and runtime over Yu's dynamic Bayesian approach. Promising preliminary results are also reported for an analysis of experimental data for genes involved in the yeast cell cycle.  相似文献   

5.
Oscillators are essential to fuel autonomous behaviours in molecular systems. Artificial oscillators built with programmable biological molecules such as DNA and RNA are generally easy to build and tune, and can serve as timers for biological computation and regulation. We describe a new artificial nucleic acid biochemical reaction network, and we demonstrate its capacity to exhibit oscillatory solutions. This network can be built in vitro using nucleic acids and three bacteriophage enzymes, and has the potential to be implemented in cells. Numerical simulations suggest that oscillations occur in a realistic range of reaction rates and concentrations.  相似文献   

6.
7.
Genetic regulatory network inference is critically important for revealing fundamental cellular processes, investigating gene functions, and understanding their relations. The availability of time series gene expression data makes it possible to investigate the gene activities of whole genomes, rather than those of only a pair of genes or among several genes. However, current computational methods do not sufficiently consider the temporal behavior of this type of data and lack the capability to capture the complex nonlinear system dynamics. We propose a recurrent neural network (RNN) and particle swarm optimization (PSO) approach to infer genetic regulatory networks from time series gene expression data. Under this framework, gene interaction is explained through a connection weight matrix. Based on the fact that the measured time points are limited and the assumption that the genetic networks are usually sparsely connected, we present a PSO-based search algorithm to unveil potential genetic network constructions that fit well with the time series data and explore possible gene interactions. Furthermore, PSO is used to train the RNN and determine the network parameters. Our approach has been applied to both synthetic and real data sets. The results demonstrate that the RNN/PSO can provide meaningful insights in understanding the nonlinear dynamics of the gene expression time series and revealing potential regulatory interactions between genes.  相似文献   

8.
Multivariate analysis of noise in genetic regulatory networks   总被引:4,自引:0,他引:4  
Stochasticity is an intrinsic property of genetic regulatory networks due to the low copy numbers of the major molecular species, such as, DNA, mRNA, and regulatory proteins. Therefore, investigation of the mechanisms that reduce the stochastic noise is essential in understanding the reproducible behaviors of real organisms and is also a key to design synthetic genetic regulatory networks that can reliably work. We use an analytical and systematic method, the linear noise approximation of the chemical master equation along with the decoupling of a stoichiometric matrix. In the analysis of fluctuations of multiple molecular species, the covariance is an important measure of noise. However, usually the representation of a covariance matrix in the natural coordinate system, i.e. the copy numbers of the molecular species, is intractably complicated because reactions change copy numbers of more than one molecular species simultaneously. Decoupling of a stoichiometric matrix, which is a transformation of variables, significantly simplifies the representation of a covariance matrix and elucidates the mechanisms behind the observed fluctuations in the copy numbers. We apply our method to three types of fundamental genetic regulatory networks, that is, a single-gene autoregulatory network, a two-gene autoregulatory network, and a mutually repressive network. We have found that there are multiple noise components differently originating. Each noise component produces fluctuation in the characteristic direction. The resulting fluctuations in the copy numbers of the molecular species are the sum of these fluctuations. In the examples, the limitation of the negative feedback in noise reduction and the trade-off of fluctuations in multiple molecular species are clearly explained. The analytical representations show the full parameter dependence. Additionally, the validity of our method is tested by stochastic simulations.  相似文献   

9.
Cui  Xiuliang  Liu  Yang  Sun  Wen  Ding  Jin  Bo  Xiaochen  Wang  Hongyang 《中国科学:生命科学英文版》2020,63(8):1201-1212
microRNAs(miRNAs), particularly the exosomal miRNAs have been widely used as biomarkers and promising therapeutic targets in cancer. However, a comprehensive analysis of miRNA-gene regulatory network with clinical significance remains scarce. The emergence of high-throughput multi-omics data over large, well-characterized patient cohorts provides an unprecedented opportunity to address this problem. Herein, we performed a clinic-centered analysis to identify cancer-associated miRNAs, miRNA-target axis. We first calculated the correlation among miRNA, mRNA and 75 unique clinico-pathological characteristics(CPCs) in 26 cancer types, and established an online resource(4CR). Interestingly, we found that the high expression of several DNA methylation-related enzymes was associated with adverse outcomes of cancer patients, and these genes were regulated by a cluster of miRNAs. Furthermore, by integrating exosomal miRNA and m RNA databases, we identified exosomal miRNA biomarkers for non-invasive cancer surveillance and therapy monitoring. Finally, we explored the role of CPC-related miRNAs for therapeutic effect prediction of drugs based on their shared targets. Our analysis pipeline illustrated the significance of clinic-centered analysis in miRNA-gene pair identification and provided helpful clues for future cancer studies.  相似文献   

10.
11.
Genetic variance is a central parameter in quantitative genetics and breeding. Assessing changes in genetic variance over time as well as the genome is therefore of high interest. Here, we extend a previously proposed framework for temporal analysis of genetic variance using the pedigree-based model, to a new framework for temporal and genomic analysis of genetic variance using marker-based models. To this end, we describe the theory of partitioning genetic variance into genic variance and within-chromosome and between-chromosome linkage-disequilibrium, and how to estimate these variance components from a marker-based model fitted to observed phenotype and marker data. The new framework involves three steps: (i) fitting a marker-based model to data, (ii) sampling realisations of marker effects from the fitted model and for each sample calculating realisations of genetic values and (iii) calculating the variance of sampled genetic values by time and genome partitions. Analysing time partitions indicates breeding programme sustainability, while analysing genome partitions indicates contributions from chromosomes and chromosome pairs and linkage-disequilibrium. We demonstrate the framework with a simulated breeding programme involving a complex trait. Results show good concordance between simulated and estimated variances, provided that the fitted model is capturing genetic complexity of a trait. We observe a reduction of genetic variance due to selection and drift changing allele frequencies, and due to selection inducing negative linkage-disequilibrium.Subject terms: Genetic variation, Quantitative trait, Agricultural genetics, Plant breeding, Agriculture  相似文献   

12.
13.
14.
本研究旨在利用生物信息学方法构建经铜诱导的ATP7B基因敲除HepG2细胞系的转录调控网络。探讨关键转录因子在肝豆状核变性发生、发展中的潜在作用机制。收集公共基因表达数据库(gene expression omnibus, GEO)中包含野生型、ATP7B基因敲除型、铜诱导的野生型和铜诱导的ATP7B基因敲除型HepG2细胞系数据。筛选由铜诱导产生的差异表达基因(differentially expressed genes,DEGs)后进行基因本体论(gene ontology,GO)、京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)富集分析。基于蛋白相互作用网络,识别疾病关键基因和功能模块,并对关键功能模块中的基因进行富集分析。最后,构建转录调控网络,筛选核心转录因子。共筛选出1 034个差异表达基因,其中上调525个,下调509个。上、下调关键功能模块分别包括了3785个和3931个基因。关键功能模块中的基因主要定位于细胞-基质连接、染色体、剪接复合体、核糖体等区域,共同参与了mRNA加工、组蛋白修饰、RNA剪切...  相似文献   

15.
16.
Lee TL  Raygada MJ  Rennert OM 《Gene》2012,496(2):88-96
Autism spectrum disorders (ASDs) are a group of diseases exhibiting impairment in social drive, communication/language skills and stereotyped behaviors. Though an increased number of candidate genes and molecular interactions have been identified by various approaches, the pathogenesis remains elusive. Based on clinical observations, data from accessible GWAS and expression datasets we identified ASDs gene candidates. Integrative gene network and a novel CNV-centric Node Network (CNN) analysis method highlighted ASDs-associated key elements and biological processes. Functional analysis identified neurological functions including synaptic cholinergic receptor (CHRNA) families, dopamine receptor (DRD2), and correlations between social behavior and oxytocin related pathways. CNN analysis of genome-wide genetic and expression data identified inheritance-related clusters related to PTEN/TSC1/FMR1 and mTor/PI3K regulation. Integrative analysis identified potential regulators of networks, specifically TNF and beta-estradiol, suggesting a potential central role in ASDs. Our data provide information on potential disease mechanisms, and key regulators that may generate novel postulations, and diagnostic molecular biomarkers.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号