首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Multispore cultures of Ceratopteris thalictroides (L.) Brongn. gametophytes contain plants of two distinct morphologies, hermaphrodite and male (Fig. 3). The male gametophyte has previously been shown to be induced by an antheridogen system. In the absence of the antheridogen all gametophytes become hermaphroditic. It is shown that the hermaphroditic gametophytes are first to develop in multispore cultures and are also the only source of antheridogen. Thus, since males are only produced in the presence of antheridogen, an explanation of the occurrence of two morphologies is evident. That is, the first gametophytes to develop do so in the absence of antheridogen, become hermaphrodites and produce antheridogen to which later developing gametophytes respond by becoming males. This does not explain why there is a range in development times for the gametophytes. Three possible controlling factors of development are investigated in multispore cultures: spore size, time of germination, and gametophyte growth. Data collected on these three factors are statistically analyzed. Analyses were done to determine the relative importance (singly or in combination) of these factors in predicting the developmental potential of a gametophyte. It was found that spore size most accurately indicated (ca 75% of the time) future gametophyte development.  相似文献   

2.
冯玉兰  黄笛  董丽 《植物研究》2010,30(4):405-410
在组织培养条件下,对麦秆蹄盖蕨(Athyrium fallaciosum)配子体发育的连续过程进行了详细观察。结果表明:麦秆蹄盖蕨孢子为四面体型; 孢子萌发为书带蕨型(Vittaria-type);原叶体发育为铁线蕨型(Adiantum-type),成熟原叶体为对称的心形;精子器近圆球形,成熟颈卵器细长,常向原叶体基部倾斜或弯曲。常规播种条件下,发现麦秆蹄盖蕨配子体有雌配子体、雄配子体、雌雄同体配子体和无性配子体类型。配子体的性别随密度不同而呈现一定的变化趋势,雄配子体随密度增大呈上升趋势;雌配子体随密度增大先上升后下降;雌雄同体配子体和无性配子体随密度变化不大。雌配子体和雌雄同体配子体具颈卵器数目一般为10~15个;精子器数目随密度的增大逐渐减少,雄配子体中具有约50个精子器,雌雄同体配子体具有约20个精子器。  相似文献   

3.
金毛狗[Cibotium barometz(L.)J.Sm.]是珍稀观赏蕨类的重要类群,为国家二级重点保护野生植物。该研究以金毛狗孢子为试验材料,探究培养密度、外源赤霉素以及光质等不同环境因子对金毛狗配子体性别分化的影响,为金毛狗人工繁育和蕨类植物配子体性别决定机制研究提供技术支持。结果表明:(1)低配子体培养密度(1个/cm2和5个/cm2)有利于颈卵器和雌配子体形成,随着配子体培养密度增加,颈卵器平均数量及雌配子体比率下降,精子器平均数量以及雄配子体和两性配子体比例增加,但配子体培养密度过高(80个/cm2)会导致大量无性配子体产生。(2)不同配子体培养密度下,随着培养时间延长,两性配子体比率均有增加,且增加幅度基本一致。(3)外源GA4显著抑制颈卵器和雌配子体形成,并显著促进精子器和雄配子体形成;外源GA3对金毛狗配子体性别分化没有显著影响。(4)白光、红光、蓝光等不同光质对金毛狗配子体性别分化未产生显著影响,但会影响配子体的发育和形态建成。  相似文献   

4.
Gametophytes of Asplenium pimpinellifolium Fee and Lygodium heterodoxum Kze., occurring as natural populations in Veracruz, Mexico, were studied with respect to their spacing, size, and number of antheridia and archegonia. Small gametophytes, 0.3-2.2 mm in width and growing in colonies, usually had high numbers of antheridia. Gametophytes of the same size, growing at least 1 5 cm from the nearest neighbour, had few antheridia. In the colonial gametophytes there was a strong correlation between heavily antheridiate ones and their proximity to large archegoniate gametophytes. The data are the first to suggest the presence of an antheridogen system operating in nature, with concomitant opportunities for cross-fertilization. The rôle of polyploidy in storing genetic variation and the rôle of antheridogen-mediated out-crossing in releasing variation are seen as co-adaptive phenomena in the ferns.  相似文献   

5.
蕨类植物性别分化对环境的响应   总被引:3,自引:1,他引:2  
宋莹莹  高晶  戴绍军 《生态学报》2009,29(9):5030-5038
蕨类植物是维管植物中唯一的孢子体和配子体都能独立生活的类群.同型孢子蕨类配子体的性别分化受到激素和环境因子的影响.生理学研究表明,成精子囊素与赤霉素能诱导雄配子体发育,抑制雌配子体发育;脱落酸阻止成精子囊素诱导的精子器形成;乙烯合成前体ACC促进赤霉素诱导的精子器形成,而乙烯合成抑制因子AOA通过抑制细胞分化来抑制精子器形成.光照对不同种类蕨类配子体分化的影响存在差异.糖类能够促进雄配子体形成,并可加速成熟雌配子体向两性分化.钙离子、钴离子和甲硫氨酸等分别参与了蓝光和赤霉素对配子体性别分化的调控过程.培养密度影响配子体生长及性别表达,高密度下雄性和无性配子体居多,而低密度下两性和雌性配子体居多.近年来的突变体表型分析与分子生物学研究表明,成精子囊素通过影响ANI1、HER、TRA、FEM和MAN等基因的表达调控配子体性别分化.综述了蕨类植物性别分化对环境响应的研究进展.  相似文献   

6.
When grown for long periods in axenic single spore cultures, gametophytes of the four European species of subgenus Hippochaete are initially male or female. Females invariably produce antheridia as they get older, but archegonium formation by males is a much rarer event and was only observed in E. hyemale and E. scirpoides. Male gametophytes are smaller, grow more slowly than the females and in E. hyemale and E. variegatum are often short-lived. The proportions of male and bisexual individuals are relatively constant within each species but vary between species. Likewise species differ in the rate at which females later produce antheridia. Gametophytes grow in three ways: activity of antheridial meristems which are totally committed to the formation of male tissues, activity of cushion meristems which may produce archegonia for an indefinite period or switch to antheridium formation, and proliferation from lamellae. Either archegonia or antheridia may arise on the adventitious branches resulting from lamellar proliferation, but the type of sex organ produced is strongly influenced by the culture medium, the sex and age of the parent tissue and the particular species in question. Only by this means are archegonia formed on initially male individuals. The sexual behaviour of the subgenus Hippochaete is compared in some detail with that of the subgenus Equisetum and several subgeneric characteristics are outlined.  相似文献   

7.
Gametophytes of five species of Equisetum that were studied in axenic single spore cultures are initially male or female, and the first antheridia appear on the males before the first arche-gonia on the females. The males never produce archegonia, but the females all produce antheridia later in progressively increasing numbers. The proportions of male and bisexual gametophytes are relatively constant within each species but vary greatly between species. Likewise between species there is great variation in the rate at which females later produce antheridia. Male gametophytes are smaller and grow more slowly than females, but individuals of both sexes live for the same length of time. After prolonged culture, growth rates fall to very low levels and there is necrosis of the older parts of the gametophytes; but sex organs are still produced. Initially female gametophytes have much sexually uncommitted tissue, whereas males are composed almost entirely of antheridial branches. The absence of archegonium formation on males may well be related to this lack of sexually undifferentiated tissue and the fact that the growth of the males is intimately connected with antheridium production.  相似文献   

8.
Male sterility in plants: occurrence, determinism, significance and use.   总被引:20,自引:0,他引:20  
Most of higher plant species are hermaphroditic and male-sterility is often considered as an accident of development. In fact among the multiple possible causes of male-sterility, the most frequently met in nature is cytoplasmic male-sterility (cms) which is a maternally inherited trait playing an active role in the evolution of gynodioecious species. Recent molecular studies have shown that this trait is determined by additional genes created in plant mitochondrial genomes due to their high recombinogenic activity. The physiological mechanisms by which the products of these genes interfere with the formation of male gametophytes are still the subject of intense research.  相似文献   

9.
BACKGROUND AND AIMS: To understand how gametophyte densities affect the sexual expression and sizes of Osmunda cinnamomea and to provide information on the density of growth needed to favour successful reproduction, fresh spores were sown at various densities and subsequent gametophyte growth was studied. METHODS: Spores were sown and cultured in the laboratory. Subsequent gameophytes at different population densities were sampled and their sexual expression and sizes were recorded. KEY RESULTS: One-year-old multispore cultures of the fern O. cinnamomea demonstrated that population density affected gametophyte growth and sexual expression. As density increased, gametophytes became significantly smaller and more slender. Female and asexual gametophytes dominated in populations of low and high densities, respectively. At intermediate population densities, hermaphroditic and male gametophytes were dominant. Female gametophytes were larger than gametophytes of all other types. Hermaphroditic gametophytes were larger than male gametophytes, which were larger than asexual gametophytes. Large gametophytes were wide-cordate, whereas smaller ones tended to be narrow-spathulate. CONCLUSIONS: Gametophyte size of O. cinnamomea is negatively related to the population density, which significantly affects gametophytes' sexual expression. The presence of unisexual and bisexual gametophytes at intermediate densities indicates that both intergametophytic and intragametophytic selfing may occur.  相似文献   

10.
Byers DL  Warsaw A  Meagher TR 《Heredity》2005,95(1):69-75
Habitat fragmentation of prairie ecosystems has resulted in increased isolation and decreased size of plant populations. In large populations, frequency-dependent selection is expected to maintain genetic diversity of sex determining factors associated with gynodioecy, that is, nuclear restorer genes that reverse cytoplasmic male sterility (nucleocytoplasmic gynodioecy). However, genetic drift will have a greater influence on small isolated populations that result from habitat fragmentation. The genetic model for nucleocytoplasmic gynodioecy implies that the proportion of female progeny produced by hermaphroditic and female plants will show more extreme differences in populations with reduced allelic diversity, and that restoration of male function will increase with inbreeding. We investigated potential impacts of effects resulting from reduced population sizes by comparison of progeny sex ratios produced by female and hermaphroditic plants in small and large populations of the gynodioecious prairie species, Lobelia spicata. A four-way contingency analysis of the impact of population size, population sex ratio, and maternal gender on progeny sex ratios showed that progeny sex ratios of hermaphroditic plants were strongly influenced by population size, whereas progeny sex ratios of female plants were strongly influenced by population sex ratio. Further, analysis of variation in progeny-type distribution indicated decreased restoration and increased loss of male function in smaller and isolated populations. These results are consistent with reduced allelic diversity or low allelic frequency at restorer loci in small and isolated populations. The consequent decrease in male function has the potential to impede seed production in these fragmented prairies.  相似文献   

11.
利用MS培养基、改良Knop’s培养基、自来水和蒸馏水分别培养水蕨中等大小孢子,同时利用改良Knop’s培养基培养不同大小的水蕨孢子,观察记录不同条件下水蕨孢子萌发和性别分化情况。实验表明,二级孢子(赤道轴120~140μm)萌发率最高;一级孢子(赤道轴〉140μm)萌发最有利于使水蕨发育为两性配子体,三级孢子(赤道轴〈120μm)萌发最有利于使水蕨发育为雄配子体;MS培养基和改良Knop’s培养基相对于自来水和蒸馏水有利于水蕨孢子萌发;各培养基中水蕨两性配子体比率排序是MS培养基〉改良Knop’s培养基〉自来水〉蒸馏水,而雄配子体比率排序与之相反。此结果为水蕨的引种保护、人工繁育和分子生物学研究提供理论依据。  相似文献   

12.
13.
A fertile frond of O. sensibitis was found which yielded spores with unusual growth characteristics. About 25% of the gametophytes derived from the spores were able to undergo 2-dimensional development in darkness, in contrast to normal plants which are filamentous in darkness. When the aberrant spores were cultured in darkness under conditions of reduced ethylene concentration, the proportion of 2-dimensional plants rose to 75%, and, moreover, up to 50% of the gametophytes produced antheridia within 2 weeks. Under comparable conditions normal gametophytes produced no antheridia. The medium from antheridial cultures of the aberrant spores failed to induce the formation of antheridia in other plants.  相似文献   

14.
The Genetic Basis of Sex Ratio in Silene Alba (= S. Latifolia)   总被引:2,自引:1,他引:1       下载免费PDF全文
D. R. Taylor 《Genetics》1994,136(2):641-651
A survey of maternal families collected from natural populations showed that the sex ratio in Silene alba was slightly female biased. Sex ratio varied among populations and among families within a female biased population. Crosses among plants from the most female biased population and the most male biased population showed that the sex ratio polymorphism was inherited through or expressed in the male parent. Males from one family in particular exhibited a severe female bias, characterized by less than 20% male progeny. The inheritance of sex ratio was investigated using a reciprocal crossing design. Sex ratios from reciprocal crosses were significantly different, indicating either sex-linkage or cytoplasmic inheritance of sex ratio. The sex ratios produced by males generally resembled the sex ratios produced by their male parents, indicating that the sex ratio modifier was Y linked. The maternal parent also significantly influenced sex ratio through an interaction with the genotype of the paternal parent. Sex ratio, therefore, is apparently controlled by several loci. Although sex ratio bias in this species may be due to deleterious alleles on the Y chromosome, it is more likely to involve an interaction between loci that cause the female bias and a Y-linked locus that enhances the proportion of males in the progeny.  相似文献   

15.
In culture tetraspores of the sporophyte (Trailliella intricata) of Sonnemaisonia hamifera gave rise to male gametophytes only. In the Gulf of St. Lawrence tetrasporangia occur annually during the autumn, but mature gametophytes have not been recorded. However, gametophytes with antheridia were found during the winter on the Atlantic coast of Nova Scotia. Both phases are capable of vegetative propagation, and this is probably the usual method of reproduction in nature.  相似文献   

16.
Cytomorphological studies of the development of young fern gametophytes (Anemia phyllitidis) have been used to investigate combined effects of gibberellic acid and ethylene on male sex expression. ACC (the key by-product in ethylene biosynthesis pathway) was found to exert a synergetic effect on the gibberellic acid-induced antheridia formation, and this phenomenon could be related with the specific stimulation of cell growth and activity of their differentiation. To complete and verify those observations male sex expression in the fern gametophytes treated with ACC-biosynthesis inhibitor was reinvestigated. Aminooxyacetic acid (AOA) restrained antheridia formation via inhibition of cell divisions. AOA influenced the arrangement and flexibility of cellulose microfibrils in the antheridial zone cells, thus affecting cell expansion. On the other hand, the level of DNA synthesis was not reduced. Transient increase in the number of S-phase cells, followed by the accumulation of G2-phase cells led to the enhancement of cell polyploidization. All these findings correspond with the previous observations and support participation of ethylene in gibberellic acid-induced male sex expression in ferns.Abbreviations AOA Aminooxyacetic acid - CPA Cell profile area - GA Gibberellin - GA3 Gibberellic acid  相似文献   

17.
In many gynodioecious species the nuclear inheritance of male fertility is complex and involves multiple (restorer) genes. In addition to restoring plants from the female (male sterile) to the hermaphrodite (male fertile) state, these genes are also thought to play a role in the determination of the quantity of pollen produced by hermaphrodites. The more restorer alleles a hermaphroditic plant possesses, the higher the pollen production. To test this hypothesis I combined the results of crossing studies of the genetics of male sterility with phenotypic data on investment in stamens and ovules among the progeny of plants involved in these studies. The sex ratio (i.e. the frequency of hermaphrodites among the progeny), being a measure of the number of restorer alleles of the maternal plant, was positively related to the investment in pollen (male function), but negatively related to the investment in ovules (female function), in both field and greenhouse experiments. Consequently, a negative correlation between male and female function was observed (trade-off) and it is suggested that antagonistic pleiotropic effects of restorer genes might be the cause. Phenotypic gender, a measure combining investment in both pollen and ovules, was highly repeatable between field and greenhouse, indicating genetic determination of a more male- or female-biased allocation pattern among the studied plants.  相似文献   

18.

Background and Aims

Variation in the relative female and male reproductive success of flowering plants is widespread, despite the fundamental hermaphroditic condition of the majority of species. In many hermaphroditic populations, environmental conditions and their influence on development and size can influence the gender expression of individuals through the formation of hermaphroditic and unisexual flowers. This study investigates the hypothesis that the bulbous, animal-pollinated, perennial Lilium apertum (Liliaceae) exhibits a form of size-dependent gender modification known as gender diphasy, in which the sexual expression of individuals depends on their size, with plants often changing sex between seasons.

Methods

Variation in floral traits was examined in relation to their size using marked individuals in natural populations, and also under glasshouse conditions. Measurements were taken of the height, flower number, floral sex expression, flower size, flower biomass and pollen production of individuals over consecutive years between 2009 and 2012 in seven populations in south-west China.

Key Results

Flowers of L. apertum are either perfect (hermaphroditic) or staminate (male) and, in any given season, plants exhibit one of three sex phenotypes: only hermaphrodite flowers, a mixture of hermaphroditic and male flowers, or only male flowers. Transitions between each of these sex phenotypes were observed over consecutive years and were commonly size-dependent, particularly transitions from small plants bearing only male flowers to those that were taller with hermaphroditic flowers. Hermaphroditic flowers were significantly larger, heavier and produced more pollen than male flowers.

Conclusions

The results for L. apertum are consistent with the ‘size advantage hypothesis’ developed for animal species with sex change. The theory predicts that when individuals are small they should exhibit the sex for which the costs of reproduction are less, and this usually involves the male phase. L. apertum provides an example of gender diphasy, a rare sexual system in flowering plants.  相似文献   

19.
Early gametophyte ontogeny was quantitatively distinct for Olympic Peninsula, Alaskan, and disjunct Idaho populations of the homosporous fern Blechnum spicant (L.) J. Sm. Although variable, gametophyte sex expression was shown to have a genetic component. Statistically different patterns of sex expression characterize each population. The Olympic Peninsula populations were distinct from each other but consistent in having a predominantly unisexual pattern. The disjunct Idaho population was predominantly bisexual at the time when comparable field collected gametophytes bear sporophytes. Preliminary experiments suggest that an antheridogen operates in this species. Increased sowing density favors maleness, and an extract from soil cultures of gametophytes shifts cultures to an exclusively male pattern after a dramatic suppression of growth. Mating experiments revealed that all populations are interfertile, although fertility was highest when the test Idaho population underwent intergametophytic-selfing. The Idaho population evidenced a low level of genetic load consistent with predictions based on its sex expression. Although Olympic Peninsula populations evidenced apparent high genetic load in some experiments, failure to produce abundant sporophytes in other experiments suggested that additional cultural factors operated to reduce sporophyte formation. Moderate density mating experiments produced single sporophytes that were comparable to field collections. Isolated gametophytes underwent polyembryony after a time delay and gametophyte proliferation. Cultural conditions which allow sporophyte formation on isolated gametophytes without this delay or proliferation must be sought before further genetic analysis is undertaken.  相似文献   

20.
The role of gibberellins (GAs) in determining sex in the gametophyte of the fern Blechnum spicant L. was studied through (a) the effect of exogenous GA4+7 and GA3 (b) quantitation of the endogenous levels of GA1, GA3, GA4, GA7, GA9, and GA20 in male and female gametophytes, and (c) the effect of flurprimidol, a GAs biosynthesis inhibitor of the steps of oxidation of ent-kaureno to ent-kaurenoic acid. Our results show that GA4+7 had a slight effect of inducing either male or female sexual organs, antheridia and archegonia, respectively. The endogenous GAs content was not significantly different between sexes, but the GA4, GA7, and GA20 levels were raised above those of the other GAs in both sexes. Neither antheridiogen biosynthesis nor antheridia formation was inhibited by flurprimidol. Gametophytes regenerated from homogenized mature gametophytes (HG) show a different physiological behavior than spore-derived gametophytes. In the first case, gametophytes are males and synthesize antheridiogen before they attain maturity, in contrast to what occurs in spore-derived gametophytes which are females and synthesize antheridiogen when mature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号