首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The EBNA1 protein of Epstein-Barr virus (EBV) activates DNA replication by binding to multiple copies of its 18-bp recognition sequence present in the Epstein-Barr virus latent origin of DNA replication, oriP. Using electrophoretic mobility shift assays, we have localized the minimal DNA binding domain of EBNA1 to between amino acids 470 and 607. We have also demonstrated that EBNA1 assembles cooperatively on the dyad symmetry subelement of oriP and that this cooperative interaction is mediated by residues within the minimal DNA binding and dimerization domain of EBNA1.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The E1 helicase of papillomaviruses is required for replication of the viral double-stranded DNA genome, in conjunction with cellular factors. DNA replication is initiated at the viral origin by the assembly of E1 monomers into oligomeric complexes that have unwinding activity. In vivo, this process is catalyzed by the viral E2 protein, which recruits E1 specifically at the origin. For bovine papillomavirus (BPV) E1 a minimal DNA-binding domain (DBD) has been identified N-terminal to the enzymatic domain. In this study, we characterized the DBD of human papillomavirus 11 (HPV11), HPV18, and BPV E1 using a quantitative DNA binding assay based on fluorescence anisotropy. We found that the HPV11 DBD binds DNA with an affinity and sequence requirement comparable to those of the analogous domain of BPV but that the HPV18 DBD has a higher affinity for nonspecific DNA. By comparing the DNA-binding properties of a dimerization-defective protein to those of the wild type, we provide evidence that dimerization of the HPV11 DBD occurs only on two appropriately positioned E1 binding-sites and contributes approximately a 10-fold increase in binding affinity. In contrast, the HPV11 E1 helicase purified as preformed hexamers binds DNA with little sequence specificity, similarly to a dimerization-defective DBD. Finally, we show that the amino acid substitution that prevents dimerization reduces the ability of a longer E1 protein to bind to the origin in vitro and to support transient HPV DNA replication in vivo, but has little effect on its ATPase activity or ability to oligomerize into hexamers. These results are discussed in light of a model of the assembly of replication-competent double hexameric E1 complexes at the origin.  相似文献   

14.
The EBNA1 (for Epstein-Barr nuclear antigen 1) protein of Epstein-Barr virus governs the replication and partitioning of the viral genomes during latent infection by binding to specific recognition sites in the viral origin of DNA replication. The crystal structure of the DNA binding portion of the EBNA1 protein revealed that this region comprises two structural motifs; a core domain, which mediates protein dimerization and is structurally homologous to the DNA binding domain of the papillomavirus E2 protein, and a flanking domain, which mediated all the observed sequence-specific contacts. To test the possibility that the EBNA1 core domain plays a role in sequence-specific DNA binding not revealed in the crystal structure, we examined the effects of point mutations in potential hydrogen bond donors located in an alpha-helix of the EBNA1 core domain whose structural homologue in E2 mediates sequence-specific DNA binding. We show that these mutations severely reduce the affinity of EBNA1 for its recognition site, and that the core domain, when expressed in the absence of the flanking domain, has sequence-specific DNA binding activity. Flanking domain residues were also found to contribute to the DNA binding activity of EBNA1. Thus, both the core and flanking domains of EBNA1 play direct roles in DNA recognition.  相似文献   

15.
16.
17.
18.
Tankyrase (TNKS) is a telomere-associated poly-ADP ribose polymerase (PARP) that has been implicated along with several telomere repeat binding factors in the regulation of Epstein-Barr virus origin of plasmid replication (OriP). We now show that TNKS1 can bind to the family of repeats (FR) and dyad symmetry regions of OriP by using a chromatin immunoprecipitation assay and DNA affinity purification. TNKS1 and TNKS2 bound to EBNA1 in coimmunoprecipitation experiments with transfected cell lysates and with purified recombinant proteins in vitro. Two RXXPDG-like TNKS-interacting motifs in the EBNA1 amino-terminal domain mediated binding with the ankyrin repeat domain of TNKS. Mutations of both motifs at EBNA1 G81 and G425 abrogated TNKS binding and enhanced EBNA1-dependent replication of OriP. Small hairpin RNA targeted knock-down of TNKS1 enhanced OriP-dependent DNA replication. Overexpression of TNKS1 or TNKS2 inhibited OriP-dependent DNA replication, while a PARP-inactive form of TNKS2 (M1045V) was compromised for this inhibition. We show that EBNA1 is subject to PAR modification in vivo and to TNKS1-mediated PAR modification in vitro. These results indicate that TNKS proteins can interact directly with the EBNA1 protein, associate with the FR region of OriP in vivo, and inhibit OriP replication in a PARP-dependent manner.  相似文献   

19.
20.
Episomal maintenance and DNA replication of EBV origin of plasmid replication (OriP) plasmid maintenance is mediated by the viral encoded origin binding protein, EBNA1, and unknown cellular factors. We found that telomeric repeat binding factor 2 (TRF2), TRF2-interacting protein hRap1, and the telomere-associated poly(ADP-ribose) polymerase (Tankyrase) bound to the dyad symmetry (DS) element of OriP in an EBNA1-dependent manner. TRF2 bound cooperatively with EBNA1 to the three nonamer sites (TTAGGGTTA), which resemble telomeric repeats. Mutagenesis of the nonamers reduced plasmid maintenance function and increased plasmid sensitivity to genotoxic stress. DS affinity-purified proteins possessed poly(ADP-ribose) polymerase (PARP) activity, and EBNA1 was subject to NAD-dependent posttranslational modification in vitro. OriP plasmid maintenance was sensitive to changes in cellular PARP/Tankyrase activity. These findings imply that telomere-associated proteins regulate OriP plasmid maintenance by PAR-dependent modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号