首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The performance of control and water-stressed 10-d-old wheat seedlings was compared. During short-term water stress (irrigation was withheld for 9 d), rates of photosynthesis and transpiration, stomatal conductance, and relative water content decreased whereas the proline content increased. Chloroplast proteins were extracted from the leaves, separated by iso-electric focusing through two-dimensional electrophoresis, and stained with CBB R-250. Differentially expressed proteins were detected and analyzed with MALDI-TOF/TOF mass spectrometry. Under water stress, 9 proteins were up-regulated whereas 11 proteins were not affected. The ribulose-1,5-bisphospate carboxylase/oxygenase (Rubisco) small and large subunits, chloride carrier/channel family, and H+-ATPase were up-regulated by water stress whereas membrane-bound ATP synthase subunit b and cytochrome b6-f complex were down-regulated.  相似文献   

2.
3.
Spinach (Spinacia oleracea) plants were subjected to salt stress by adding NaCl to the nutrient solution in increments of 25 millimolar per day to a final concentration of 200 millimolar. Plants were harvested 3 weeks after starting NaCl treatment. Fresh and dry weight of both shoots and roots was decreased more than 50% compared to control plants but the salt-stressed plants appeared healthy and were still actively growing. The salt-stressed plants had much thicker leaves. The salt-treated plants osmotically adjusted to maintain leaf turgor. Leaf K+ was decreased but Na+ and Cl were greatly increased.

The potential photosynthetic capacity of the leaves was measured at saturating CO2 to overcome any stomatal limitation. Photosynthesis of salt-stressed plants varied only by about 10% from the controls when expressed on a leaf area or chlorophyll basis. The yield of variable chlorophyll a fluorescence from leaves was not affected by salt stress. Stomatal conductance decreased 70% in response to salt treatment.

Uncoupled rates of electron transport by isolated intact chloroplasts and by thylakoids were only 10 to 20% below those for control plants. CO2-dependent O2 evolution was decreased by 20% in chloroplasts isolated from salt-stressed plants. The concentration of K+ in the chloroplast decreased by 50% in the salt-stressed plants, Na+ increased by 70%, and Cl increased by less than 20% despite large increases in leaf Na+ and Cl.

It is concluded that, for spinach, salt stress does not result in any major decrease in the photosynthetic potential of the leaf. Actual photosynthesis by the plant may be reduced by other factors such as decreased stomatal conductance and decreased leaf area. Effective compartmentation of ions within the cell may prevent the accumulation of inhibitory levels of Na+ and Cl in the chloroplast.

  相似文献   

4.
Effect of paclobutrazol (PBZ) treatment on salinity tolerance of wheat (Triticum aestivum) was investigated on a salt-tolerant (Karchia-65) and salt-sensitive (Ghods) cultivars. Salinity significantly reduced the investigated growth parameters such as plant height, length and area of sixth leaf, root length, fresh and dry weight of shoot, roots and sixth leaf, water content (WC) of plant and seeds weight in the both cultivars. The negative effect of salinity in Ghods cultivar was more than Karchia cultivar. However, PBZ treatment reduced the growth in both cultivars, the differences in plant growth among various levels of NaCl decreased in PBZ-treated plants. Salt stress resulted in high accumulation of Na+ in the sixth leaf and roots in both cultivars, particularly in Ghods cultivar. Against Karchia cultivar, salt stress decreased the storage of K+, P and N in sixth leaf and roots in Ghods cultivar. In the both cultivars, PBZ treatment enhanced the K+, P and N contents in sixth leaf and roots by increasing salinity. Although PBZ treatment decreased the growth of plants, it improved the weight of seeds against stress damage. PBZ treatment reduced the accumulation of harmful Na+ ion in plant tissues while increased the K+, P and N contents. These observations suggest that PBZ treatment may increase tolerance by diminishing ionic imbalance caused by salt stress.  相似文献   

5.
F-box proteins, components of the Skp1-Cullin1-F-box (SCF) protein E3 ubiquitin ligase complex, serve as the variable component responsible for substrate recognition and recruitment in SCF-mediated proteolysis. F-box proteins interact with Skp1 through the F-box motif and with ubiquitination substrates through C-terminal protein interaction domains. F-box proteins regulate plant development, various hormonal signal transduction processes, circadian rhythm, and cell cycle control. We isolated an F-box protein gene from wheat spikes at the onset of flowering. The Triticum aestivum cyclin F-box domain (TaCFBD) gene showed elevated expression levels during early inflorescence development and under cold stress treatment. TaCFBD green fluorescent protein signals were localized in the cytoplasm and plasma membrane. We used yeast two-hybrid screening to identify proteins that potentially interact with TaCFBD. Fructose bisphosphate aldolase, aspartic protease, VHS, glycine-rich RNA-binding protein, and the 26S proteasome non-ATPase regulatory subunit were positive candidate proteins. The bimolecular fluorescence complementation assay revealed the interaction of TaCFBD with partner proteins in the plasma membranes of tobacco cells. Our results suggest that the TaCFBD protein acts as an adaptor between target substrates and the SCF complex and provides substrate specificity to the SCF of ubiquitin ligase complexes.  相似文献   

6.
Amino Acid incorporation by wheat chloroplasts   总被引:12,自引:10,他引:2       下载免费PDF全文
Isolated chloroplasts from wheat leaves incorporate radioactive amino acids into protein. Both physiological and biochemical evidence show that contaminating bacteria are not responsible for the activity. Activity is best in plastids from 5-day-old or younger seedlings; a sharp drop usually occurs by day 6 or 7. The system requires added adenosine triphosphate, guanosine triphosphate and Mg++, and is inhibited by ribonuclease, puromycin and chloramphenicol. Preliminary evidence is presented that polyribosomes are present in the young leaf chloroplast fraction. Half of the protein that is formed in a 20-minute incubation is released in soluble form.  相似文献   

7.
The ultrastructure of mesophyll chloroplasts of maize (Zea mays L.) was more severely affected by iron deficiency that induced mild chlorosis than was the ultrastructure of bundle sheath plastids. Ferredoxin and ribulose diphosphate carboxylase levels were severely decreased by iron deficiency. Malic enzyme was less affected, and phosphoenolpyruvate carboxylase activity remained high even under severe iron deficiency. Iron deficient leaves fixed carbon into malic and aspartic acids but the rate of entrance of carbon into the sugar phosphates and sucrose was greatly reduced compared to the control. Chlorophyll a/b ratios ranged from low values of less than 2 in severely iron deficient leaves to high values exceeding 4 in leaves showing little iron deficiency.  相似文献   

8.
9.
The twin-arginine translocation (Tat) system operates in the chloroplast thylakoid and the plasma membranes of a wide range of bacteria. It recognizes substrates bearing cleavable signal peptides in which a twin-arginine motif almost invariably plays a key role in recognition by the translocation machinery. These signal peptides are surprisingly similar to those used to specify transport by Sec-type systems, but the Tat pathway differs in fundamental respects from Sec-type and other protein translocases. Its key attribute is its ability to translocate large, fully folded (even oligomeric) proteins across tightly sealed membranes. To date, three key tat genes have been characterised and the first details of the Tat system are beginning to emerge. In this article we review the salient features of Tat systems, with an emphasis on the targeting signals involved, the substrate specificities of Tat systems, our current knowledge of Tat complex structures and the known mechanistic features. Although the article is focused primarily on bacterial systems, we incorporate relevant aspects of plant thylakoid Tat work and we discuss how the plant and bacterial systems may differ in some respects.  相似文献   

10.
Composition of complex lipid of chloroplasts of two cultivars of wheat and barley was determined at tillering, ear emergence and grain filling stages. The chloroplast lipids, MGDG, DGDG and PG were maximum at grain filling stage in both wheat and barley. PC content showed variations at different stages in both the crops while no significant changes were observed in PI concentrations at grain filling stage.  相似文献   

11.
Glycerate was found to effect photosynthetic O2 evolution in wheat chloroplasts by its conversion to triose phosphate and by influencing the rate of photosynthesis through the reductive pentose phosphate pathway. In the absence of bicarbonate, the photosynthetic O2 evolution with glycerate was low (10 to 25 mumol mg chlorophyll-1 h-1), and only about 15% of the rate of bicarbonate-dependent O2 evolution under optimum conditions. This corresponds to a rate of glycerate conversion to triose phosphate of 20 to 50 mumol mg chlorophyll-1 h-1, which appears sufficient to accommodate flux through the glycolate pathway in vivo. Pi was required for this glycerate-dependent O2 evolution; rates remained relatively constant between 0.1 and 40 mM Pi, and proceeded with little lag upon illumination (less than 0.5 min). Evidence for O2 evolution due to glycerate conversion to triose phosphate could be conclusively demonstrated by addition of glycolaldehyde, an inhibitor of the regenerative phase of photosynthesis, which prevents CO2 fixation. The effect of glycerate on photosynthesis in the presence of bicarbonate was determined by measuring both photosynthetic O2 evolution and 14CO2 fixation at varying Pi concentrations. Low concentrations of glycerate (micro- to millimolar levels) prevented inhibition of photosynthesis by Pi. With 1 mM bicarbonate and pH 8.2, which is favorable for glycolate synthesis, maximum rates of photosynthesis were obtained at low Pi (25 microM), whereas strong inhibition of photosynthesis occurred at only 0.2 mM Pi. Addition of glycerate relieved the inhibition of photosynthesis by Pi, indicating the possible importance of glycerate metabolism in the chloroplast under photorespiratory conditions. The initiation of photosynthesis by glycerate at inhibitory Pi levels occurred with little reduction in the ratio of CO2 fixed/O2 evolved, and the main effect of glycerate was on carbon assimilation. While the basis for the beneficial effect of glycerate on CO2 assimilation under moderate to high Pi levels is uncertain, it may increase the concentration of 3-phosphoglycerate (PGA) in the chloroplast, and thus make conditions more favorable for induction of photosynthesis and reduction of PGA to triose phosphate.  相似文献   

12.
In early seedlings of wheat genotypes two isoforms of Rubisco activase with molecular weights of 42 and 46 kDa are expressed. Amounts of both isoforms significantly increase in early seedlings of the durum wheat genotype Barakatli-95 exposed to salt stress. But at the beginning of the tillering stage, the changes in quantities of both RCA isoforms are different in durum and bread wheat genotypes subjected to a 3-day drought stress. In the leaves of the early seedlings of the studied wheat genotypes exposed to drought stress quantities of PEPC subunits increase compared to the control but they remain relatively stable in early roots and germinating seeds. However, quantities of its subunits decrease sharply in roots and germinating seeds of early seedlings under the influence of 100 mM NaCl. In flag leaves and ear elements of the Barakatli-95 genotype grown under normal water supply conditions protein quantities of PEPC subunits change differently depending on time. Changes in protein quantities of RCA, PEPC and Rubisco enzymes have been studied comparatively in ear elements and flag leaves after the fourth day of anthesis.  相似文献   

13.
14.
Jarvis P  Robinson C 《Current biology : CB》2004,14(24):R1064-R1077
The vast majority of the approximately 3000 different proteins required to build a fully functional chloroplast are encoded by the nuclear genome and translated on cytosolic ribosomes. As chloroplasts are each surrounded by a double-membrane system, or envelope, sophisticated mechanisms are necessary to mediate the import of these nucleus-encoded proteins into chloroplasts. Once inside the organelle, many chloroplast proteins engage one of four additional protein sorting mechanisms that direct targeting to the internal thylakoid membrane system.  相似文献   

15.
Composition, dominance and change in population density of species flying over and feeding on winter wheat fields was studied between 1982 and 1998 at Mosonmagyaróvár. There were 29 aphid species among flying insects. The ones imposing risk to winter wheat were as follows: Diuraphis noxia Kurdj., Metopolophium dirhodum Walk., Rho‐palosiphum padi L., Schizaphis graminum Rond., Sitobion avenae Fabr. Number of flying individuals changed year by year, depending principally on climatic factors (temperature, relative humidity, and rainfall). Flight was continuous from late April to harvest. In the average of 17 years flight peak was observed in June.

Establishment of the firsts alate individuals of aphids with holocyclic development can be expected from the second decade of April. As a result of the continuous reproduction, the peak in number of individuals was observed in the second decade of June. During the six years between 1993 and 1998 this value was 17.18 aphids/ plant. Every year there were deviations from the average data, e.g., in 1994 aphid number per plant was 33.61. These pests appeared on the ears in the first decade of June, their number was continuously increasing due to drying of leaves.

During the six years when detailed data were recorded, Rh. padi L. was the dominant species three times (1994: 70.4%; 1995: 82.6%; 1996: 87.9%), M. dirhodum Walk. took this role two times (1993: 67.1%; 1997: 84.8%) and S. avenae Fabr. only once (1998: 53%).

Considering seventeen years’ data, it is necessary to produce resistant varieties and/or seed dressing, or insecticide treatment to control the first alates.  相似文献   

16.
Sucrose-gradient and analytical ultracentrifugation showed that chloroplast polyribosomes from 4-day-old seedlings had mono-, di-, tri-, tetra- and traces of penta-ribosomes, in contrast with those from 7-day-old seedlings in which only the mono-, di- and traces of tri-ribosomes were present. Without Mg(2+) the polyribosomes dissociated into ribosomal subunits. The rate of l-[U-(14)C]phenylalanine incorporation was threefold greater for preparations from 4- than from 7-day-old seedlings. Incorporation by the latter was stimulated by polyuridylic acid. The rates of incorporation were similar whether the reaction mixture contained chloroplast or wheat-germ transfer RNA and amino acid synthetases purified on methylated albumin-on-kieselguhr and Sephadex G-75 columns respectively. The cofactor requirement was the same as for isolated intact chloroplasts. Osmotic rupture of chloroplasts with and without Triton X-100 revealed the presence of free and bound ribosomes. Free single ribosomes isolated by osmotic shrinkage or prepared by pancreatic ribonuclease digestion of chloroplast polyribosomes had negligible incorporation activity. This activity was increased by washing or by polyuridylic acid, but was still only a fraction of that given by polyribosomes. A comparison of incorporation activity of chloroplast polyribosomes with those from the surrounding cytoplasm showed the former to be 20 times more active.  相似文献   

17.
Homologous protein import machineries in chloroplasts and cyanelles   总被引:2,自引:0,他引:2  
The cyanelles of the glaucocystophyte alga Cyanophora paradoxa resemble endosymbiotic cyanobacteria, especially in the presence of a peptidoglycan wall between the inner and outer envelope membranes. However, it is now clear that cyanelles are in fact primitive plastids. Phylogenetic analyses of plastid, nuclear and mitochondrial genes support a single primary endosymbiotic event. In this scenario, cyanelles and all other plastid types are derived from an ancestral photosynthetic organelle combining the high gene content of rhodoplasts and the peptidoglycan wall of cyanelles. This means that the import apparatuses of all primary plastids, i.e. those from glaucocystophytes, red algae, green algae and higher plants, should be homologous. If this is the case, then transit sequences should be similar and heterologous import experiments feasible. Thus far, heterologous in vitro import has been shown in one direction only: precursors from C. paradoxa were imported into isolated pea or spinach chloroplasts. Cyanelle transit sequences differ from chloroplast stroma targeting peptides in containing in their N-terminal domain an invariant phenylalanine residue which is shown here to be crucial for import. In addition, we now demonstrate that heterologous precursors are readily imported into isolated cyanelles, provided that the essential phenylalanine residue is engineered into the N-terminal part of chloroplast transit peptides. The cyanelle and likely also the rhodoplast import apparatus can be envisaged as prototypes with a single receptor/channel showing this requirement for N-terminal phenylalanine. In chloroplasts, multiple receptors with overlapping and less stringent specificities have evolved, explaining the efficient heterologous import of native precursors from C. paradoxa.  相似文献   

18.
The chloroplast, leaf ribosomal, and leaf total RNA from seedlings of 2 varieties of Triticum durum and 3 varieties of Triticum vulgare were compared. For a given RNA preparation the major nucleotide composition was the same for all varieties. Irrespective of the variety, the chloroplast total RNA had a higher cytidylic and a lower adenylic acid content than the leaf ribosomal RNA, whereas, the guanylic and uridylic acid content of all RNA preparations was essentially the same. Pseudouridylic acid was present in all RNA preparations and was consistently higher in the durum than the vulgare varieties for leaf ribosomal RNA and leaf total RNA. The leaf ribosomal RNA of all varieties had 2 sub-units with sedimentation coefficients of approximately 18 S and 25 S. The molecular weight of the faster sedimenting subunit was about 2 times that of the slower sedimenting subunit.  相似文献   

19.
The effects of root chilling (2 °C; during 1, 5 h, 1, 2, 4 and 7 days) on the ultrastructure, functional activity of chloroplasts and cold tolerance of leaf cells of wheat (Triticum aestivum L.) were studied. Results indicated that the area of the chloroplasts increased and the number of grana in the chloroplast decreased already within first hours of the experiment. On the 2nd–7th day of the cold treatment, the length of photosynthetic membranes in the chloroplasts increased owing to the membranes of thylakoids in grana. The number of chloroplasts per cell was increased by the end of the experiment. Reduction of electron transport rate and intensification of non-photochemical quenching of chlorophyll fluorescence were observed in the first hours of root chilling. The growth of the leaves slowed in the first day of the treatment and resumed on the second day. Leaf area in the root-chilled plants by the end of the experiment exceeded the initial values by 60 %. The significant rise in cold tolerance of leaf cells was detected after 24 h of root chilling. After 48 h of the treatment, the cold tolerance reached a maximum, and did not change thereafter. It is assumed that most of the observed structural and functional changes are adaptive, and meant to support the photosynthetic function and promote the cold tolerance of the plants.  相似文献   

20.
Although chloroplast protein stability has long been recognised as a major level of post‐translational regulation in photosynthesis and gene expression, the factors determining protein stability in plastids are largely unknown. Here, we have identified stability determinants in vivo by producing plants with transgenic chloroplasts that express a reporter protein whose N‐ and C‐termini were systematically modified. We found that major stability determinants are located in the N‐terminus. Moreover, testing of all 20 amino acids in the position after the initiator methionine revealed strong differences in protein stability and indicated an important role of the penultimate N‐terminal amino acid residue in determining the protein half life. We propose that the stability of plastid proteins is largely determined by three factors: (i) the action of methionine aminopeptidase (the enzyme that removes the initiator methionine and exposes the penultimate N‐terminal amino acid residue), (ii) an N‐end rule‐like protein degradation pathway, and (iii) additional sequence determinants in the N‐terminal region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号