首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The availability of the Arabidopsis genome revealed the complexity of the gene families implicated in dithiol disulfide exchanges. Most non-green organisms present less dithiol oxidoreductase genes. The availability of the almost complete genome sequence of rice now allows a systematic search for thioredoxins, glutaredoxins and their reducers. This shows that all redoxin families previously defined for Arabidopsis have members in the rice genome and that all the deduced rice redoxins fall within these families. This establishes that the redoxin classification applies both to dicots and monocots. Nevertheless, within each redoxin type the number of members is not the same in these two higher plants and it is not always possible to define orthologues between rice and Arabidopsis. The sequencing of two unicellular algae (Chlamydomonas and Ostreococcus) genomes are almost finished. This allowed us to follow the origin of the different gene families in the green lineage. It appears that most thioredoxin and glutaredoxin types, their chloroplastic, mitochondrial and cytosolic reducers are always present in these unicellular organisms. Nevertheless, striking differences appear in comparison to higher plant redoxins. Some thioredoxin types are not present in these algal genomes including thioredoxins o, clot and glutaredoxins CCxC. Numerous redoxins, including the cytosolic thioredoxins, do not fit with the corresponding higher plant classification. In addition both algae present a NADPH-dependent thioredoxin reductase with a selenocysteine which is highly similar to the animal thioredoxin reductases, a type of thioredoxin reductase not present in higher plants. An erratum to this article can be found at  相似文献   

4.
5.
The beetle family Scolytidae includes several groups having regular sib-mating and extremely female-biased sex ratios. Two such groups are known to include haplodiploid species: (i) the tribe Xyleborini and (ii) Coccotrypes and related genera within the tribe Dryocoetini. Relationships of these groups have been controversial. We analysed elongation factor 1-α (852 bp) and cytochrome oxidase 1 (1179 bp) sequences for 40 species. The most-parsimonious trees imply a single origin of haplodiploidy uniting Xyleborini (approximately 1200 species) and sib-mating Dryocoetini (approximately 160 species). The sister-group of the haplodiploid clade is the outcrossing genus Dryocoetes. The controversial genus Premnobius is outside the haplodiploid clade. Most haplodiploid scolytids exploit novel resources, ambrosia fungi or seeds, but a few have the ancestral habit of feeding on phloem. Thus, scolytids provide the clearest example of W. D. Hamilton''s scenario for the evolution of haplodiploidy (life under bark leading to inbreeding and hence to female-biased sex ratios through haplodiploidy) and now constitute a unique opportunity to study diplodiploid and haplodiploid sister-lineages in a shared ancestral habitat. There is some evidence of sex determination by maternally inherited endosymbiotic bacteria, which may explain the consistency with which female-biased sex ratios and close inbreeding have been maintained.  相似文献   

6.
7.
8.
9.
10.
Based on results from phylogenetic analyses of nuclear 18S-26S rDNA internal transcribed spacer (ITS) region sequences, we suggest that the monophyletic tarweed and silversword subtribe (Madiinae) is phylogenetically nested among epaleate, x = 19 species of helenioid Heliantheae. Strong bootstrap support (100%) was obtained for a sister-group relationship between Madiinae and Arnica (including Mallotopus and Whitneya) in an analysis including representatives of recognized genera in a principally Californian clade (Madieae sensu Baldwin) identified from a phylogenetic investigation of Heliantheae s.l. (sensu lato) and Eupatorieae. In all minimum-length trees, the robust lineage comprising Madiinae and Arnica (x = 19) is part of a larger clade that also comprises Eatonella s.s. (sensu stricto), Hulsea, and Venegasia, all with x = 19. The phylogenetic position of Madiinae within a group of genera based uniformly on x = 19 leads us to conclude that the modal numbers of n = 7 and n = 8 (and other numbers, as low as n = 4) in Madiinae are the results of extreme dysploidy. Among the x = 19 "arnicoid" taxa, the near-universal characteristics of perenniality (except in the monotypic Eatonella s.s. and a minority of hulseas) and montane or high-latitudinal occurrence (except in the monotypic Venegasia) lead us to suggest that the most recent common ancestor of the tarweeds (a principally annual group of seasonally dry, low-elevation habitats) was probably a montane, herbaceous perennial resembling the unusual subalpine and alpine tarweeds constituting Raillardella s.s. (x = 17), an arnica-like genus. In Madiinae, Raillardella s.s. may be plesiomorphic in habit, capitular and ecological characteristics, and high base chromosome number. Shifts to an annual habit and to low chromosome numbers in Madiinae have been followed by subsequent episodes of polyploidy and descending dysploidy. We conclude that genome evolution in Madiinae has been marked by wide swings in chromosome number that confuse identification of diploids and polyploids.  相似文献   

11.
Triacylglycerols have important physiological roles in photosynthetic organisms, and are widely used as food, feed and industrial materials in our daily life. Phospholipid:diacylglycerol acyltransferase (PDAT) is the pivotal enzyme catalyzing the acyl‐CoA‐independent biosynthesis of triacylglycerols, which is unique in plants, algae and fungi, but not in animals, and has essential functions in plant and algal growth, development and stress responses. Currently, this enzyme has yet to be examined in an evolutionary context at the level of the green lineage. Some fundamental questions remain unanswered, such as how PDATs evolved in photosynthetic organisms and whether the evolution of terrestrial plant PDATs from a lineage of charophyte green algae diverges in enzyme function. As such, we used molecular evolutionary analysis and biochemical assays to address these questions. Our results indicated that PDAT underwent divergent evolution in the green lineage: PDATs exist in a wide range of plants and algae, but not in cyanobacteria. Although PDATs exhibit the conservation of several features, phylogenetic and selection‐pressure analyses revealed that overall they evolved to be highly divergent, driven by different selection constraints. Positive selection, as one major driving force, may have resulted in enzymes with a higher functional importance in land plants than green algae. Further structural and mutagenesis analyses demonstrated that some amino acid sites under positive selection are critically important to PDAT structure and function, and may be central in lecithin:cholesterol acyltransferase family enzymes in general.  相似文献   

12.
Reductive metabolism of strigolactones (SLs) in several plants was investigated. Analysis of aquaculture filtrates of cowpea and sorghum each fed with four stereoisomers of GR24, the most widely used synthetic SL, revealed stereospecific reduction of the double bond at C-3′ and C-4′ in the butenolide D-ring with preference for an unnatural 2′S configuration. The cowpea metabolite converted from 2′-epi-GR24 and the sorghum metabolite converted from ent-GR24 had the methyl group at C-4′ in the trans configuration with the substituent at C-2′, different from the cis configuration of the synthetic H2-GR24 reduced with Pd/C catalyst. The plants also reduced the double bond in the D-ring of 5-deoxystrigol isomers with a similar preference. The metabolites and synthetic H2-GR24 stereoisomers were much less active than were the GR24 stereoisomers in inducing seed germination of the root parasitic weeds Striga hermonthica, Orobanche crenata, and O. minor. These results provide additional evidence of the importance of the D-ring for bioactivity of SLs.  相似文献   

13.
The Cdc25 protein phosphatase is a key enzyme involved in the regulation of the G(2)/M transition in metazoans and yeast. However, no Cdc25 ortholog has so far been identified in plants, although functional studies have shown that an activating dephosphorylation of the CDK-cyclin complex regulates the G(2)/M transition. In this paper, the first green lineage Cdc25 ortholog is described in the unicellular alga Ostreococcus tauri. It encodes a protein which is able to rescue the yeast S. pombe cdc25-22 conditional mutant. Furthermore, microinjection of GST-tagged O. tauri Cdc25 specifically activates prophase-arrested starfish oocytes. In vitro histone H1 kinase assays and anti-phosphotyrosine Western Blotting confirmed the in vivo activating dephosphorylation of starfish CDK1-cyclinB by recombinant O. tauri Cdc25. We propose that there has been coevolution of the regulatory proteins involved in the control of M-phase entry in the metazoan, yeast and green lineages.  相似文献   

14.
15.
Chen  Dong-hong  Huang  Yong  Ruan  Ying  Shen  Wen-Hui 《Planta》2016,243(4):825-846
Planta - The origin and evolution of plant PRC1 core components. Polycomb repressive complex1 (PRC1) plays critical roles in epigenetic silencing of homeotic genes and determination of cell fate....  相似文献   

16.
17.
Karrikins and strigolactones are novel plant growth regulators that contain similar molecular features, but very little is known about how they elicit responses in plants. A tentative molecular mechanism has previously been proposed involving a Michael-type addition for both compounds. Through structure-activity studies with karrikins, we now propose an alternative mechanism for karrikin and strigolactone mode of action that involves hydrolysis of the butenolide ring.  相似文献   

18.
The Viridiplantae (green plants) include land plants as well as the two distinct lineages of green algae, chlorophytes and charophytes. Despite their critical importance for identifying the closest living relatives of land plants, phylogenetic studies of charophytes have provided equivocal results [1-5]. In addition, many relationships remain unresolved among the land plants, such as the position of mosses, liverworts, and the enigmatic Gnetales. Phylogenomics has proven to be an insightful approach for resolving challenging phylogenetic issues, particularly concerning deep nodes [6-8]. Here we extend this approach to the green lineage by assembling a multilocus data set of 77 nuclear genes (12,149 unambiguously aligned amino acid positions) from 77 taxa of plants. We therefore provide the first multigene phylogenetic evidence that Coleochaetales represent the closest living relatives of land plants. Moreover, our data reinforce the early divergence of liverworts and the close relationship between Gnetales and Pinaceae. These results provide a new phylogenetic framework and represent a key step in the evolutionary interpretation of developmental and genomic characters in green plants.  相似文献   

19.
The mouse inner cell mass is established by cells that are allocated to internal positions after the 8-cell stage. We analyzed the timing of this allocation by microinjecting two cell lineage markers, horseradish peroxidase and rhodamine-conjugated dextran, into mouse blastomeres at the 8- to 32-cell stage. Prospective analysis was performed by coinjection of peroxidase and dextran, followed by 12-22 hr of culture and staining for peroxidase activity; retrospective analysis was performed by injection of peroxidase alone and localization of sister cells without further culture. Both approaches indicated that cells are allocated to internal positions during the fourth and fifth cleavage divisions, but not the sixth cleavage division, of the mouse embryo. Thus, outer cells can have inner descendants until the late morula/early blastocyst (32-cell) stage, but cells remaining outside after the fifth cleavage division are restricted to a trophectoderm fate. This information about cell lineage indicates that the previously observed totipotency of the cleaving mammalian embryo's cells is a regulative attribute that is used in normal development.  相似文献   

20.
The cardiovascular system consists of many cell types with distinct embryonic origins. Cells from an Islet1 (Isl1)-expressing progenitor population make a substantial contribution to the developing heart. We reasoned that cells derived from Isl1-expressing progenitors might contribute more widely to the cardiovascular system. We show that cells derived from an Isl1-expressing progenitor lineage make a wide contribution to the systemic vasculature and that embryos conditionally deficient for Rac1 within this cell population develop defects in the non-cardiac vasculature. These data define new roles for Isl1 in the developing embryo and demonstrate a contribution of Isl1-expressing progenitors to vascular endothelium in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号