首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In present study we describe the sequencing and annotated analysis of the individual genome of Estonian. Using SOLID technology we generated 2,449,441,916 of 50-bp reads. The Bioscope version 1.3 was used for mapping and pairing of reads to the NCBI human genome reference (build 36, hg18). Bioscope enables also the annotation of the results of variant (tertiary) analysis. The average mapping of reads was 75.5% with total coverage of 107.72 Gb. resulting in mean fold coverage of 34.6. We found 3,482,975 SNPs out of which 352,492 were novel. 21,222 SNPs were in coding region: 10,649 were synonymous SNPs, 10,360 were nonsynonymous missense SNPs, 155 were nonsynonymous nonsense SNPs and 58 were nonsynonymous frameshifts. We identified 219 CNVs with total base pair coverage of 37,326,300 bp and 87,451 large insertion/deletion polymorphisms covering 10,152,256 bp of the genome. In addition, we found 285,864 small size insertion/deletion polymorphisms out of which 133,969 were novel. Finally, we identified 53 inversions, 19 overlapped genes and 2 overlapped exons. Interestingly, we found the region in chromosome 6 to be enriched with the coding SNPs and CNVs. This study confirms previous findings, that our genomes are more complex and variable as thought before. Therefore, sequencing of the personal genomes followed by annotation would improve the analysis of heritability of phenotypes and our understandings on the functions of genome.  相似文献   

2.
Rice is an excellent system for plant genomics as it represents a modest size genome of 430 Mb. It feeds more than half the population of the world. Draft sequences of the rice genome, derived by whole-genome shotgun approach at relatively low coverage (4-6 X), were published and the International Rice Genome Sequencing Project (IRGSP) declared high quality (> 10 X), genetically anchored, phase 2 level sequence in 2002. In addition, phase 3 level finished sequence of chromosomes 1, 4 and 10 (out of 12 chromosomes of rice) has already been reported by scientists from IRGSP consortium. Various estimates of genes in rice place the number at >50,000. Already, over 28,000 full-length cDNAs have been sequenced, most of which map to genetically anchored genome sequence. Such information is very useful in revealing novel features of macroand micro-level synteny of rice genome with other cereals. Microarray analysis is unraveling the identity of rice genes expressing in temporal and spatial manner and should help target candidate genes useful for improving traits of agronomic importance. Simultaneously, functional analysis of rice genome has been initiated by marker-based characterization of useful genes and employing functional knock-outs created by mutation or gene tagging. Integration of this enormous information is expected to catalyze tremendous activity on basic and applied aspects of rice genomics.  相似文献   

3.
This paper describes an integrated laboratory project for intermediate to advanced undergraduate students. The project spans an entire academic quarter (10 weeks) and involves a series of operations that give students experience with fundamental techniques in cell biology, molecular biology, biochemistry, genomics, and bioinformatics. In the process, the student learning community is strengthened, students gain increasing confidence in their abilities in the laboratory, and data are collected toward the eventual sequencing of a cytoplasmic genome. The culmination of the project is the preparation by students of a paper written in the format of a particularly accessible online journal. Journal of Industrial Microbiology & Biotechnology (2000) 24, 339–344. Received 02 April 1999/ Accepted in revised form 22 November 1999  相似文献   

4.
5.
New studies show that novel long-range enhancers of developmental genes can emerge by exaptation of protein-coding sequences with no previous regulatory function.  相似文献   

6.
Life scientists who work with the supermarket of genome data will find the EnsMart database and software package offers a valuable door to a wealth of genes and genome features. Not only available to lab biologists on the web, this popular multi-organism genome database can be installed and used on your own Unix computer with relative ease. It offers a flexible, fast and practical data-mining framework for computer-savvy biologists and bioinformaticians.  相似文献   

7.
Sequence data of entire eukaryotic genomes and their detailed comparison have provided new evidence on genome evolution. The major mechanisms involved in the increase of genome sizes are polyploidization and gene duplication.Subsequent gene silencing or mutations, preferentially in regulatory sequences of genes, modify the genome and permit the development of genes with new properties. Mechanisms such as lateral gene transfer, exon shuffling or the creation of new genes by transposition contribute to the evolution of a genome, but remain of relatively restricted relevance.Mechanisms to decrease genome sizes and, in particular, to remove specific DNA sequences, such as blocks of satellite DNAs, appear to involve the action of RNA interference (RNAi). RNAi mechanisms have been proven to be involved in chromatin packaging related with gene inactivation as well as in DNA excision during the macronucleus development in ciliates.  相似文献   

8.
Yan L  Velikanov M  Flook P  Zheng W  Szalma S  Kahn S 《FEBS letters》2003,554(3):257-263
The ability to rapidly and reliably develop hypotheses on the function of newly discovered protein sequences requires systematic and comprehensive analysis. Such an analysis, embodied within the DS GeneAtlas pipeline, has been used to critically evaluate the severe acute respiratory syndrome (SARS) genome with the goal of identifying new potential targets for viral therapeutic intervention. This paper discusses several new functional hypotheses on the roles played by the constituent gene products of SARS, and will serve as an example of how such assignments can be developed or extended on other systems of interest.  相似文献   

9.
Current challenges in de novo plant genome sequencing and assembly   总被引:1,自引:0,他引:1  
Genome sequencing is now affordable, but assembling plant genomes de novo remains challenging. We assess the state of the art of assembly and review the best practices for the community.  相似文献   

10.
Recent achievements in the whole-genome sequencing especially viral and bacterial ones together with the development of methods of bioinformatics and molecular biology, have created preconditions for transition from synthesis of genes to assembly of the whole genomes based on chemically synthesized blocks, oligonucleotides. The creation of artificial genomes and artificial cells will undoubtedly render huge influence on a deepening of knowledge on mechanisms of functioning of living systems at a cellular level, on a way of origin and evolution of life, and also on biotechnology of the future, and will generate preconditions for the further development of synthetic biology and nanobiotechnology.  相似文献   

11.
As the first assembly of the human genome was announced on June 26, 2000, we have entered post genome era. The genome sequence represents a new starting point for science and medicine with possible impact on research across the life sciences. In this review I tried to offer brief summaries of history and progress of the Human Genome Project and two major challenges ahead, functional genomics and DNA sequence variation research.  相似文献   

12.
13.
14.
The past year has been a spectacular one for Drosophila research. The sequencing and annotation of the Drosophila melanogaster genome has allowed a comprehensive analysis of the first three eukaryotes to be sequenced—yeast, worm and fly—including an analysis of the fly's influences as a model for the study of human disease. This year has also seen the initiation of a full-length cDNA sequencing project and the first analysis of Drosophila development using high-density DNA microarrays containing several thousand Drosophila genes. For the first time homologous recombination has been demonstrated in flies and targeted gene disruptions may not be far off.  相似文献   

15.
Rice functional genomics is a scientific approach that seeks to identify and define the function of rice genes, and uncover when and how genes work together to produce phenotypic traits. Rapid progress in rice genome sequencing has facilitated research in rice functional genomics in China. The Ministry of Science and Technology of China has funded two major rice functional genomics research programmes for building up the infrastructures of the functional genomics study such as developing rice functional genomics tools and resources. The programmes were also aimed at cloning and functional analyses of a number of genes controlling important agronomic traits from rice. National and international collaborations on rice functional genomics study are accelerating rice gene discovery and application.  相似文献   

16.
Plant nuclear genomes encompass a wide range of variation in size and nucleotide composition with diverse arrangements of chromosomal segments, repetitive sequences and distribution of genes. Comparative genomic analysis may be undertaken at different levels of organisation, which are reflected in this review, together with a focus on the genetic and functional significance of the observed variation. Patterns of genome organisation have been revealed which reflect the different underlying mechanisms and constraints driving change. Thus comparative issues of genome size, nucleotide sequence composition and genome heterogeneity are provided as a background to understanding the different levels of segmental and repetitive sequence duplication and distribution of genes. The extent of synteny and collinearity revealed by recent genetic and sequence comparisons is discussed, together with a consideration of problems associated with such analyses. The possible origins and mechanisms of variation in genome size and organisation are covered, including the prevalence of duplication at different levels of organisation. The likely genetic, functional and adaptive consequences of replicated loci are discussed with evidence from comparative studies. The scope for comparative analysis of epigenetic plant genome variation is considered. Finally, opportunities for applying comparative genomics to isolating genes and understanding complex crop genomes are addressed.  相似文献   

17.
18.
More than 190 plastid genomes have been completely sequenced during the past two decades due to advances in DNA sequencing technologies.Based on this unprecedented abundance of data,extensive genomic changes have been revealed in the plastid genomes.Inversion is the most common mechanism that leads to gene order changes.Several inversion events have been recognized as informative phylogenetic markers,such as a 30-kb inversion found in all living vascular plants minus lycopsids and two short inversions putat...  相似文献   

19.
Rice genome organization: the centromere and genome interactions   总被引:9,自引:0,他引:9  
Over the last decade, many varied resources have become available for genome studies in rice. These resources include over 4000 DNA markers, several bacterial artificial chromosome (BAC) libraries, P-1 derived artificial chromosome (PAC) libraries and yeast artificial chromosome (YAC) libraries (genomic DNA clones, filters and end-sequences), retrotransposon tagged lines, and many chemical and irradiated mutant lines. Based on these, high-density genetic maps, cereal comparative maps, YAC and BAC physical maps, and quantitative trait loci (QTL) maps have been constructed, and 93 % of the genome has also been sequenced. These data have revealed key features of the genetic and physical structure of the rice genome and of the evolution of cereal chromosomes. This Botanical Briefing examines aspects of how the rice genome is organized structurally, functionally and evolutionarily. Emphasis is placed on the rice centromere, which is composed of long arrays of centromere-specific repetitive sequences. Differences and similarities amongst various cereal centromeres are detailed. These indicate essential features of centromere function. Another view of various kinds of interactive relationships within and between genomes, which could play crucial roles in genome organization and evolution, is also introduced. Constructed genetic and physical maps indicate duplication of chromosomal segments and spatial association between specific chromosome regions. A genome-wide survey of interactive genetic loci has identified various reproductive barriers that may drive speciation of the rice genome. The significance of these findings in genome organization and evolution is discussed.  相似文献   

20.
With recent advances in genotyping and sequencing technologies,many disease susceptibility loci have been identified.However,much of the genetic heritability remains unexplained and the replication rate between independent studies is still low.Meanwhile,there have been increasing efforts on functional annotations of the entire human genome,such as the Encyclopedia of DNA Elements(ENCODE)project and other similar projects.It has been shown that incorporating these functional annotations to prioritize genome wide association signals may help identify true association signals.However,to our knowledge,the extent of the improvement when functional annotation data are considered has not been studied in the literature.In this article,we propose a statistical framework to estimate the improvement in replication rate with annotation data,and apply it to Crohn’s disease and DNase I hypersensitive sites.The results show that with cell line specific functional annotations,the expected replication rate is improved,but only at modest level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号