首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polygenic diseases with a broad phenotypic spectrum, such as polycystic ovary syndrome (PCOS), present a particular challenge in terms of identifying the underlying genetic mechanisms, nevertheless genetic variants have impact on the individual phenotype. We aimed to determine if next to genetic variations like SNPs further mechanisms might play a role in the pathogenesis of PCOS. We examined the effect of copy-number variations (CNVs) on metabolic phenotypes in PCOS. The intragenic rs1244979, rs2815752 in NEGR1 gene, and rs780094 in GCKR gene were genotyped and CNVs were determined by droplet digital polymerase chain reaction (ddPCR) in PCOS patients (n?=?153) and controls without metabolic syndrome (n?=?142). The study indicated that SNPs are not associated with the pathogenesis of PCOS but affect metabolic phenotypes. The CNVs investigated show a lower variability in PCOS than in CON. Furthermore, we provided direct evidence that the copy number, but not the genotype of the CNV in the genomic regions of rs780094(GCKR) is associated with low level of high-density lipoprotein cholesterol in PCOS. This study supports the hypothesis that not only genetic variants, but also CNVs in metabolically relevant genes, have an effect on metabolic phenotypes in our group of PCOS patients.  相似文献   

2.
The polycystic ovary syndrome (PCOS) is a complex endocrine-metabolic disorder consisting of reproductive disturbances associated with all aspects of the metabolic syndrome and genetic components in the pathology of this complex disease is very likely. Accordingly, variations in single genes might affect specific features of PCOS and thereby help to define different subgroups. SREBP-1 or LXRα have been shown to be genetically linked to lipid metabolism or insulin sensitivity. As these are two major aspects of the PCOS phenotype, we evaluated both genes in a cohort of 153 PCOS patients. Analyses of both genes revealed in SREBF-1, i.e. SREBP-1a and SREBP-1c, not any variation and in the LXRα gene no novel sequence variations. Common variants of LXRα (rs2279238:G; all:0.8658; PCOS:0.8627; controls: 0.8686 or A: all:0.13412; PCOS:0.1373; controls:0.1314; (OR (95% CI) 0.9508 (0.4226–2.1385); rs11039155: G: all:0.8767; PCOS:0.8663; controls:0.8857 and A all:0.1233; PCOS:0.1337; controls:0.1143; (OR (95% CI) 0.8383 (0.3618–1.9371)) were also not directly associated to PCOS. Combined analyses of both polymorphism revealed that there was no difference of distribution between the groups. In contrast, analyses of the impact of these polymorphisms on metabolic parameters of the syndrome indicated significant differences related to genotypes. The data indicated that rs11039155 increases metabolic risk, whereas rs2279238 has a protective effect on the overall metabolic risk. The investigation of the PCOS group presented indicates that the combined analyses of variations in putative candidate genes allowed a genotype-phenotype correlation for metabolic features.  相似文献   

3.
Cytokines affect lipid and glucose metabolism and also alter the body's habitus. They play a role in the development of lipodystrophy syndrome. Adipocytes secrete the pro-inflammatory cytokines IL-1, TNF-α and IL-6. The plasma cytokine concentration is associated with the percentage and distribution of fat tissue in the body. The metabolic disturbances are strongly associated with increased levels of pro-inflammatory cytokines (IL-1, IL-6 and TNF-α). Plasma levels of cytokines such as TNF-α, IL-6 and leptin were found to be increased while plasma resistin levels were found to be variable in patients suffering from obesity and type II diabetes mellitus. Until now, limited information has been available on the polymorphism of cytokine and adipokine genes in patients of HIV-associated lipodystrophy (HIVLD), which can contribute to individual variations in susceptibility to metabolic diseases, especially to HIVLD. Hence, we studied the association of cytokine and adipokine gene polymorphisms in various diseases and their impact on HIVLD. We carry out an extensive search using several databases, including PubMed, EMBASE and Google Scholar. The distribution of cytokine and adipokine gene polymorphisms and their expression levels varied among various populations. We examined the variants of cytokine and adipokine genes, which can contribute to individual variations in susceptibility to metabolic diseases, especially to HIVLD. In the current review, we present a brief account of the risk factors of HIVLD, the pathogenesis of HIVLD and the polymorphism of cytokine and adipokine genes in various diseases with special reference to their impact on HIVLD.  相似文献   

4.
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder of reproductive age women. The syndrome is caused by a combination of environmental influences and genetic predisposition. Despite extensive efforts, the heritable factors contributing to PCOS development are not fully understood. The objective of this study was to test the hypothesis that genetic background contributes to the development of a PCOS-like reproductive and metabolic phenotype in mice exposed to excess DHEA during the pubertal transition. We tested whether the PCOS phenotype would be more pronounced on the diabetes-prone C57BL/6 background than the previously used strain, BALB/cByJ. In addition, we examined strain-dependent upregulation of the expression of ovarian and extra-ovarian candidate genes implicated in human PCOS, genes containing known strain variants, and genes involved with steroidogenesis or insulin sensitivity. These studies show that there are significant strain-related differences in metabolic response to excess androgen exposure during puberty. Additionally, our results suggest the C57BL/6J strain provides a more robust and uniform experimental platform for PCOS research than the BALB/cByJ strain.  相似文献   

5.
Polycystic ovary syndrome (PCOS) shows not only hyperandrogenemia, hirsutism and fertility problems, but also metabolic disturbances including obesity, cardiovascular events and type-2 diabetes. Accumulating evidence suggests some degree of inflammation associated with prominent aspects of PCOS. We aimed to investigate the association of genetic variants 3′UTR rs17468190 (G/T) of the inflammation-associated gene MEP1A (GenBank ID: NM_005588.2) with metabolic disturbances in PCOS and healthy control women.  相似文献   

6.
Polycystic ovary syndrome is known to be characterized by metabolic abnormalities such as hyperinsulinemia, adiposity and dyslipidemia. Both insulin receptor substrate-1 and peroxisome proliferator-activated receptor-γ have emerged as significant candidate genes in the pathogenesis of PCOS. In this study, we report for the first time, the association pattern of these genes with PCOS among South Indian women. Two hundred fifty PCOS cases and 299 controls were sequenced for IRS-1 exon1 and PPAR-γ exon 2 and exon 6 to study the already reported SNPs in other ethnic groups and to identify any novel SNP in these exonic regions specific to the Indian population. We did not find any novel SNP in our population except for those already reported- two IRS-1 polymorphisms (Gly972Arg and G2323A) and two PPAR-γ polymorphisms (Pro12Ala and His447His). While the IRS-1 polymorphic alleles had a similar distribution between cases and controls, the PPAR-γ exon 2 Ala allele and exon 6 His447His T allele were significantly more in the controls than in the cases (p≤0.05). Haplotype association analysis also suggests that both IRS-1 and PPAR-γ haplotypes with mutations depicted reduced frequency of hyperandrogenic and metabolic traits in PCOS compared to the haplotype with only wild type alleles. Our study on Indian women suggests that while IRS-1, contrary to the earlier findings in other ethnic groups, seems to have a probable protective role against development of specific PCOS sub-phenotypes, the evidence for a probable protective role of PPAR-γ is reaffirmed in our study.  相似文献   

7.
Cytokines act as pleiotropic polypeptides able to regulate inflammatory/immune responses and to provide important signals in physiological and pathological processes. Several cytokines (Th1, Th2, and Th17) seem to be involved in the pathophysiology of Behçet’s disease, a chronic immune-mediated disease characterized by oral and genital lesions and ocular inflammation. Its individual susceptibility seems to be modulated by genetic variants in genes codifying these cytokines. Th1 and Th17 seem to be involved in the disease’s active phases, and Th2 seems to affect the development or severity of the disease; however, contrasting data are reported. In this study, some genetic variants of the Th1/Th2 cytokine genes were investigated in Sicilian patients and age- and gender-matched controls. Three very significant associations with Behçet’s disease were detected, and combined genotypes associated with increased disease risk were identified. Results obtained point to the key role of Th1/Th2 cytokine genetic variants in disease susceptibility.  相似文献   

8.
Polycystic ovary syndrome (PCOS) is one of the most common causes of infertility in child-bearing-age women. It is characterized by ovulation dysfunction, polycystic ovaries, and hyperandrogenism. Inflammation is likely to be a crucial contributor to the pathogenesis of PCOS. However, the association between the inflammatory cytokines and the development of PCOS has not been reported. To explore the relationship between the inflammatory cytokines and PCOS, alterations of serum proteins in dehydroepiandrosterone (DHEA)-induced PCOS rats were screened by protein array, and the concentration of IFN-γ was further measured by using enzyme-linked immunosorbent assay (ELISA). DHEA-induced PCOS rats had a decreased level of IFN-γ compared with the control rats, which was restored partly in flutamide (an androgen receptor antagonist)-treated rats. Moreover, the level of IFN-γ in serum of patients with PCOS was also lower than that in healthy women. Using the ovarian granulosa cells (KGN), we demonstrated that DHEA downregulated the expression and secretion of IFN-γ in dose- and time-dependent manners, which could be restored to some extent by treating with flutamide. Furthermore, flutamide ameliorated the inhibitory effect on cell proliferation and promotive effect on cell apoptosis by DHEA. The results also revealed that IFN-γ promoted the proliferation but inhibited the apoptosis of KGN cells, which was suppressed by DHEA via activating the downstream PI3K/AKT signaling pathway. Taken together, these results showed that DHEA inhibited the proliferation and promoted the apoptosis of ovarian granulosa cells through downregulating the expression of IFN-γ which could be restored by flutamide, and IFN-γ may serve as a potential inflammatory biomarker for PCOS detection.  相似文献   

9.
10.
Osteoporosis is a disease characterized by exaggerated loss of bone mass, with as much as 50 to 85% of the variation in bone mineral density (BMD) commonly accepted as being genetically determined. Although intensive studies have attempted to elucidate the genetic effects of polymorphisms on BMD and/or osteoporosis in several genes, the genes involved are still largely unknown. The possible associations of genetic variants in five-candidate genes (IL10, CCR3, MCP1, MCP2 and GC) with spinal BMD were investigated in Korean postmenopausal women (n = 370). Fourteen SNPs in five candidate genes were genotyped, and the haplotypes of each gene constructed. The associations of adjusted spinal BMD by age, year since menopause (YSM) and body mass index (BMI), with genetic polymorphisms, were analyzed using multiple regression models. Genetic association analysis of Korean postmenopausal women revealed that IL10 -592A > C and/or IL10 ht2 were associated with decreased bone mass, whereas no significant associations were observed with all polymorphisms in other genes. The levels of spinal BMD in individuals bearing the IL10 -592CC genotype were lower (0.78 +/- 0.16) than those in others (0.85 +/- 0.17) (P = 0.02), and the BMD of IL10 ht2 bearing individuals were also lower (0.82 +/- 0.15) than those in others (0.85 +/- 0.17) (P = 0.04). Our results suggest that variants of IL10 might play a role in the decreased BMD, although additional study might need to be followed-up in a more powerful cohort.  相似文献   

11.
The use of cytokines from the IL-2 family (also called the common γ chain cytokine family) such as interleukin (IL)-2, IL-7, IL-15, and IL-21 to activate the immune system of cancer patients is one of the most important areas of current cancer immunotherapy research. The infusion of IL-2 at low or high doses for multiple cycles in patients with metastatic melanoma and renal cell carcinoma was the first successful immunotherapy for cancer proving that the immune system could completely eradicate tumor cells under certain conditions. The initial clinical success observed in some IL-2-treated patients encouraged further efforts focused on developing and improving the application of other IL-2 family cytokines (IL-4, IL-7, IL-9, IL-15, and IL-21) that have unique biological effects playing important roles in the development, proliferation, and function of specific subsets of lymphocytes at different stages of differentiation with some overlapping effects with IL-2. IL-7, IL-15, and IL-21, as well as mutant forms or variants of IL-2, are now also being actively pursued in the clinic with some measured early successes. In this review, we summarize the current knowledge on the biology of the IL-2 cytokine family focusing on IL-2, IL-15 and IL-21. We discuss the similarities and differences between the signaling pathways mediated by these cytokines and their immunomodulatory effects on different subsets of immune cells. Current clinical application of IL-2, IL-15 and IL-21 either as single agents or in combination with other biological agents and the limitation and potential drawbacks of these cytokines for cancer immunotherapy are also described. Lastly, we discuss the future direction of research on these cytokines, such as the development of new cytokine mutants and variants for improving cytokine-based immunotherapy through differential binding to specific receptor subunits.  相似文献   

12.
Reports describing the effect of interferon‐γ (IFNγ) on interleukin‐1β (IL‐1β) production are conflicting. We resolve this controversy by showing that IFNγ potentiates IL‐1β release from human cells, but transiently inhibits the production of IL‐1β from mouse cells. Release from this inhibition is dependent on suppressor of cytokine signalling 1. IL‐1β and Th17 cells are pathogenic in mouse models for autoimmune disease, which use Mycobacterium tuberculosis (MTB), in which IFNγ and IFNβ are anti‐inflammatory. We observed that these cytokines suppress IL‐1β production in response to MTB, resulting in a reduced number of IL‐17‐producing cells. In human cells, IFNγ increased IL‐1β production, and this might explain why IFNγ is detrimental for multiple sclerosis. In mice, IFNγ decreased IL‐1β and subsequently IL‐17, indicating that the adaptive immune response can provide a systemic, but transient, signal to limit inflammation.  相似文献   

13.
14.
X‐linked adrenoleukodystrophy (X‐ALD) is an inherited disease characterized by progressive inflammatory demyelization in the brain, adrenal insufficiency, and an abnormal accumulation of very long chain fatty acids (VLCFA) in tissue and body fluids. Considering that inflammation might be involved in pathophysiology of X‐ALD, we aimed to investigate pro‐ and anti‐inflammatory cytokines in plasma from three different male phenotypes (CCER, AMN, and asymptomatic individuals). Our results showed that asymptomatic patients presented increased levels of pro‐inflammatory cytokines IL‐1β, IL‐2, IL‐8, and TNF‐α and the last one was also higher in AMN phenotype. Besides, asymptomatic patients presented higher levels of anti‐inflammatory cytokines IL‐4 and IL‐10. AMN patients presented higher levels of IL‐2, IL‐5, and IL‐4. We might hypothesize that inflammation in X‐ALD is related to plasmatic VLCFA concentration, since there were positive correlations between C26:0 plasmatic levels and pro‐inflammatory cytokines in asymptomatic and AMN patients and negative correlation between anti‐inflammatory cytokine and C24:0/C22:0 ratio in AMN patients. The present work yields experimental evidence that there is an inflammatory imbalance associated Th1, (IL‐2, IL‐6, and IFN‐γ), Th2 (IL‐4 and IL‐10), and macrophages response (TNF‐α and IL‐1β) in the periphery of asymptomatic and AMN patients, and there is correlation between VLCFA plasmatic levels and inflammatory mediators in X‐ALD. Furthermore, we might also speculate that the increase of plasmatic cytokines in asymptomatic patients could be considered an early biomarker of brain damage and maybe also a predictor of disease progression.  相似文献   

15.
Inflammatory bowel disease (IBD) patients display elevated levels of intraluminal nitric oxide (NO). NO can react with other molecules to form toxic compounds, which has led to the idea that NO may be an important mediator of IBD. However, the cellular source of NO and how its production is regulated in the intestine are unclear. In this study we aimed to determine if intestinal myofibroblasts produce NO in response to the IBD‐associated cytokines IL‐1β, TNFα, and IFNγ. Intestinal myofibroblasts were isolated from mice and found to express inducible nitric oxide synthase (iNOS) mRNA, but not endothelial NOS or neuronal NOS. Individual treatment of myofibroblasts with IL‐1β, TNFα, or IFNγ had no effect on NO production, but stimulation with combinations of these cytokines synergistically increased iNOS mRNA and protein expression. Treatment with TNFα or IFNγ increased cell surface expression of IFNγRI or TNFRII, respectively, suggesting that these cytokines act in concert to prime NO production by myofibroblasts. Impairment of NF‐κB activity with a small molecule inhibitor was sufficient to prevent increased expression of IFNγRI or TNFRII, and inhibition of Akt, JAK/STAT, or NF‐κB blocked nearly all NO production induced by combinatorial cytokine treatment. These data indicate that intestinal myofibroblasts require stimulation by multiple cytokines to produce NO and that these cytokines act through a novel pathway involving reciprocal cytokine receptor regulation and signaling by Akt, JAK/STAT, and NF‐κB. J. Cell. Physiol. 228: 572–580, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Polycystic ovary syndrome (PCOS) is characterised by infertility, obesity, insulin resistance and clinical and/or biochemical signs of hyperandrogenism. Obesity is known to be correlated with PCOS causing ovulatory dysfunction and hormone imbalances. Moreover, fat mass and the obesity gene (FTO) were linked with obesity and PCOS. Therefore, it is of interest to determine the genotype and allele frequency for three FTO variants - rs17817449 (G/T), rs1421085 (C/T) and rs8050136 (A/C) -in western Saudi population. 95 PCOS patients and 94 controls were recruited for this study. The genetic variants were assayed using real-time polymerase chain reaction using TaqMan genotyping assays. The chi-squared test was applied to investigate the difference between single nucleotide polymorphisms on PCOS and control subjects, and binary logistic regression was used to determine the association of FTO variants with PCOS symptoms. Variants rs17817449 and rs1421085 were significantly linked with PCOS susceptibility in the study population. Rs17817449 and rs8050136 were significantly associated with hair loss in the PCOS group. Furthermore, rs1421085 and rs8050136 were associated with a high body mass index (BMI>30 kg/m2). Risk alleles in our population associated with hair loss and elevated BMI in women with PCOS were homozygous C for rs8050136. This data will help in defining the genetic predisposition of PCOS among women in western Saudi Arabia.  相似文献   

17.
Mice are widely used as models to study the roles of chemokines and cytokines in immune and inflammatory responses. In our work to determine the basal levels of cytokines in saliva, nasal wash fluid (NWF), bronchoalveolar lavage fluid (BALF), and serum of mice, we found that injection of carbamoylcholine chloride, used to stimulate saliva production, induced variations in the interleukin (IL) 6 levels of NWF and BALF supernatants. To characterize this response, C57BL/6 mice were given 10 microg carbamoylcholine chloride intraperitoneally and euthanized at 0, 1, 3, 6, 12, 24, 48, 72, and 96 h after injection. IL6 was increased in NWF supernatants by 2 to 3 h, remained elevated for 24 h, and declined by 48 h after injection. To determine whether carbamoylcholine chloride increased Th1 cytokine (IL2, IL12[p70], and interferon gamma), Th2 cytokine (IL4, IL5, and IL10), granulocyte-macrophage colony-stimulating factor (GM-CSF), or proinflammatory cytokine (IL1beta, tumor necrosis factor alpha, and IL6 in saliva and serum) levels, mice were given 10 microg carbamoylcholine chloride and euthanized. In 47 mice, all cytokine levels in saliva supernatants, NWF supernatants, BALF supernatants, and serum were within normal reported levels (range, 1 to 364 pg/ml); in the serum of the remaining 3 mice, GM-CSF, IL1beta, and IL2 levels were increased. In summary, carbamoylcholine chloride induces a rapid, elevated IL6 response in the nasal cavity and respiratory tract of mice but does not alter the levels of other Th1, Th2, or proinflammatory cytokines.  相似文献   

18.
The zebrafish genome contains a large number of genes encoding potential cytokine receptor genes as judged by homology to mammalian receptors. The sequences are too divergent to allow unambiguous assignments of all receptors to specific cytokines, and only a few have been assigned functions by functional studies. Among receptors for class II helical cytokines-i.e., IFNs that include virus-induced Ifns (Ifn-) and type II Ifns (Ifn-γ), together with Il-10 and its related cytokines (Il-20, Il-22, and Il-26)-only the Ifn--specific complexes have been functionally identified, whereas the receptors for the two Ifn-γ (Ifn-γ1 and Ifn-γ2) are unknown. In this work, we identify conditions in which Ifn-γ1 and Ifn-γ2 (also called IFNG or IFN-γ and IFN-gammarel) are induced in fish larvae and adults. We use morpholino-mediated loss-of-function analysis to screen candidate receptors and identify the components of their receptor complexes. We find that Ifn-γ1 and Ifn-γ2 bind to different receptor complexes. The receptor complex for Ifn-γ2 includes cytokine receptor family B (Crfb)6 together with Crfb13 and Crfb17, whereas the receptor complex for Ifn-γ1 does not include Crfb6 or Crfb13 but includes Crfb17. We also show that of the two Jak2 paralogues present in the zebrafish Jak2a but not Jak2b is involved in the intracellular transmission of the Ifn-γ signal. These results shed new light on the evolution of the Ifn-γ signaling in fish and tetrapods and contribute toward an integrated view of the innate immune regulation in vertebrates.  相似文献   

19.
Qin K  Rosenfield RL 《Steroids》2011,76(1-2):135-139
Background/AimHexose-6-phosphate dehydrogenase (H6PD) inactivating mutations cause cortisone reductase deficiency, which manifests with hyperandrogenism unexplained by commonly used tests and, thus, mimics polycystic ovary syndrome (PCOS). The aim of this study was to screen for mutations of H6PD gene in PCOS patients with biochemical hyperandrogenemia.MethodsDirect DNA sequencing of the entire H6PD coding sequence was performed in 74 PCOS patients and 31 healthy controls. Results were confirmed by PCR-restriction fragment length polymorphism assay to determine the genotypic frequency of the variants.ResultsMultiple novel missense variants were detected in the study. Two exon 2 variants (acccaggc deletion proximal to the start codon and D151A) and two exon 5 variants (R453Q and P554L) were common, occurring in 23.8%, 17.1%, 35.2%, and 16.1%, respectively. There was significant linkage disequilibrium between the exon 2 and exon 5 variants. No significant differences were observed in the genotype, allele distributions, or adrenal function tests of the variants between cases and control groups. We did not detect any reported inactivating mutations in our study.ConclusionAlthough the H6PD gene is very polymorphic and missense variants are common, coding variants rarely (<1.5%) are responsible for hyperandrogenemic PCOS. We suggest that genetic studies be reserved for patients with dexamethasone-suppressible adrenal hyperandrogenism who have a discrepancy between urinary 17α-hydroxycorticoid and cortisol excretion.  相似文献   

20.
Mounting evidence has established a role for chronic inflammation in the development of obesity-induced insulin resistance, as genetic ablation of pro-inflammatory cytokines and chemokines elevated in obesity improves insulin signaling in vitro and in vivo. Recent evidence further highlights interleukin (IL)-12 family cytokines as prospective inflammatory mediators linking obesity to insulin resistance. In this study, we present empirical evidence demonstrating that IL-12 family related genes are expressed and regulated in insulin-responsive tissues under conditions of obesity. First, we report that respective mRNAs for each of the known members of this cytokine family are expressed within detectable ranges in WAT, skeletal muscle, liver and heart. Second, we show that these cytokines and their cognate receptors are divergently regulated with genetic obesity in a tissue-specific manner. Third, we demonstrate that select IL-12 family cytokines are regulated in WAT in a manner that is dependent on the developmental stage of obesity as well as the inflammatory progression associated with obesity. Fourth, we report that respective mRNAs for IL-12 cytokines and receptors are also expressed and divergently regulated in cultured adipocytes under conditions of inflammatory stress. To our knowledge, this report is the first study to systemically evaluated mRNA expression of all IL-12 family cytokines and receptors in any tissue under conditions of obesity highlighting select family members as potential mediators linking excess nutrient intake to metabolic diseases such as insulin resistance, diabetes and heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号