首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To relate patterns of distribution of marine echinoderms and decapods around southern Australia to major ecological and historical factors. Location Shallow‐water (0–100 m) marine waters off southern Australia, south of 30° S. Methods (1) Record the presence/absence of known echinoderm and decapod species in cells of c. 1° latitude and longitude, along the coast of southern mainland Australia and Tasmania. (2) Describe patterns in species composition, species richness and endemism through gradient analysis, ordination and cluster analysis. (3) Relate these patterns to distance and temperature gradients, the area of continental shelf, the average size of species range, and known historical factors. Results Species composition varied with both latitude and longitude. Species richness was relatively constant from east to west but graded with latitude from high in the warm‐temperate regions around Perth and Sydney to low in cool‐temperate southern Tasmania. Species richness was not related to the area of continental shelf or average species range size. Species turnover was not correlated with rates of temperature change. It was problematic to separate distance from temperature gradients, but there was evidence that the southern distribution limits of some species are related to minimum sea surface temperature. Within the taxonomic groups surveyed, evolutionary radiation has been largely limited to a few cosmopolitan species‐rich genera. Main conclusions There are historical as well as ecological hypotheses explaining the latitudinal gradient of marine species richness in southern Australia: (1) the continual invasion and speciation of species of tropical origin as Australia has split from Gondwana and drifted northward; (2) progressive extinction of some Gondwanan cool‐temperate species at the limits of their range; (3) low level of immigration of additional cool‐temperate species; and (4) some in situ endemic speciation.  相似文献   

2.
3.
A synthetic model is presented to enlarge the evolutionary framework of the General Dynamic Model (GDM) and the Glacial Sensitive Model (GSM) of oceanic island biogeography from the terrestrial to the marine realm. The proposed ‘Sea‐Level Sensitive’ dynamic model (SLS) of marine island biogeography integrates historical and ecological biogeography with patterns of glacio‐eustasy, merging concepts from areas as diverse as taxonomy, biogeography, marine biology, volcanology, sedimentology, stratigraphy, palaeontology, geochronology and geomorphology. Fundamental to the SLS model is the dynamic variation of the littoral area of volcanic oceanic islands (defined as the area between the intertidal and the 50‐m isobath) in response to sea‐level oscillations driven by glacial–interglacial cycles. The following questions are considered by means of this revision: (i) what was the impact of (global) glacio‐eustatic sea‐level oscillations, particularly those of the Pleistocene glacial–interglacial episodes, on the littoral marine fauna and flora of volcanic oceanic islands? (ii) What are the main factors that explain the present littoral marine biodiversity on volcanic oceanic islands? (iii) How can differences in historical and ecological biogeography be reconciled, from a marine point of view? These questions are addressed by compiling the bathymetry of 11 Atlantic archipelagos/islands to obtain quantitative data regarding changes in the littoral area based on Pleistocene sea‐level oscillations, from 150 thousand years ago (ka) to the present. Within the framework of a model sensitive to changing sea levels, we discuss the principal factors affecting the geographical range of marine species; the relationships between modes of larval development, dispersal strategies and geographical range; the relationships between times of speciation, modes of larval development, ecological zonation and geographical range; the influence of sea‐surface temperatures and latitude on littoral marine species diversity; the effect of eustatic sea‐level changes and their impact on the littoral marine biota; island marine species–area relationships; and finally, the physical effects of island ontogeny and its associated submarine topography and marine substrate on littoral biota. Based on the SLS dynamic model, we offer a number of predictions for tropical, subtropical and temperate volcanic oceanic islands on how rates of immigration, colonization, in‐situ speciation, local disappearance, and extinction interact and affect the marine biodiversity around islands during glacials and interglacials, thus allowing future testing of the theory.  相似文献   

4.
Aim The Arctic Ocean is one of the last near‐pristine regions on Earth, and, although human activities are expected to impact on Arctic ecosystems, we know very little about baseline patterns of Arctic Ocean biodiversity. This paper aims to describe Arctic Ocean‐wide patterns of benthic biodiversity and to explore factors related to the large‐scale species diversity patterns. Location Arctic Ocean. Methods We used large ostracode and foraminiferal datasets to describe the biodiversity patterns and applied comprehensive ecological modelling to test the degree to which these patterns are potentially governed by environmental factors, such as temperature, productivity, seasonality, ice cover and others. To test environmental control of the observed diversity patterns, subsets of samples for which all environmental parameters were available were analysed with multiple regression and model averaging. Results Well‐known negative latitudinal species diversity gradients (LSDGs) were found in metazoan Ostracoda, but the LSDGs were unimodal with an intermediate maximum with respect to latitude in protozoan foraminifera. Depth species diversity gradients were unimodal, with peaks in diversity shallower than those in other oceans. Our modelling results showed that several factors are significant predictors of diversity, but the significant predictors were different among shallow marine ostracodes, deep‐sea ostracodes and deep‐sea foraminifera. Main conclusions On the basis of these Arctic Ocean‐wide comprehensive datasets, we document large‐scale diversity patterns with respect to latitude and depth. Our modelling results suggest that the underlying mechanisms causing these species diversity patterns are unexpectedly complex. The environmental parameters of temperature, surface productivity, seasonality of productivity, salinity and ice cover can all play a role in shaping large‐scale diversity patterns, but their relative importance may depend on the ecological preferences of taxa and the oceanographic context of regions. These results suggest that a multiplicity of variables appear to be related to community structure in this system.  相似文献   

5.
The diversity on coral reefs has long captivated observers. We examine the mechanisms of speciation, role of ecology in speciation, and patterns of species distribution in a typical reef‐associated clade—the diverse and colorful Calcinus hermit crabs—to address the origin of tropical marine diversity. We sequenced COI, 16S, and H3 gene regions for ~90% of 56 putative species, including nine undescribed, “cryptic” taxa, and mapped their distributions. Speciation in Calcinus is largely peripatric at remote locations. Allopatric species pairs are younger than sympatric ones, and molecular clock analyses suggest that >2 million years are needed for secondary sympatry. Substantial niche conservatism is evident within clades, as well as a few major ecological shifts between sister species. Color patterns follow species boundaries and evolve rapidly, suggesting a role in species recognition. Most species prefer and several are restricted to oceanic areas, suggesting great dispersal abilities and giving rise to an ocean‐centric diversity pattern. Calcinus diversity patterns are atypical in that the diversity peaks in the west‐central oceanic Pacific rather than in the Indo‐Malayan “diversity center.” Calcinus speciation patterns do not match well‐worn models put forth to explain the origin of Indo‐West Pacific diversity, but underscore the complexity of marine diversification.  相似文献   

6.
The latitudinal gradient of species diversity is a widely recognized but poorly understood phenomenon. In marine systems, differences in dispersal abilities among species may pose an additional problem in identifying the processes that affect diversity. We compared latitudinal diversity gradients along two parallel continental coasts, the east and west coasts of South America, of two groups of Crustacea (Brachyura and Anomura), which exclusively exhibit planktonic development. We also evaluated the species‐area and the energy‐input hypotheses. Diversity decreased with increasing latitude for both groups in both oceans. Results suggest that the spatial structure of sea surface temperature (SST) explains diversity of both groups at large, but not small (< 5°), scales. Range size and latitude were not correlated. We hypothesize that SST differentially affects taxa with contrasting modes of development, influencing patterns of diversity. We suggest that developmental modes of marine organisms should be considered in future diversity analyses.  相似文献   

7.
Explanations for major biodiversity patterns have not achieved a consensus, even for the latitudinal diversity gradient (LDG), but most relate to patterns of solar energy influx into Earth systems, and its effects on temperature (as biochemical activity rates are temperature sensitive) and photosynthesis (which drives nearly all of the productivity that fuels ecosystems). Marine systems break some of the confounding correlations among temperature, latitude and biodiversity that typify the terrestrial systems that have dominated theoretical discussions and large‐scale analyses. High marine diversities occur not only in warm shallow seas where productivity may be either low or high, depending on regional features, but also in very cold deep‐sea regions, indicating that diversity is promoted by stability in temperature and in trophic resources (nutrients and food items), and more specifically by their interaction, rather than by high mean values of either variable. The common association of high diversity with stable but low to moderate annual productivity suggests that ecological specialization underlies the similarly high diversities in the shallow tropics and deep sea. Recent work on shallow‐marine bivalves is consistent with this view of decreasing specialization in less stable habitats. Lower diversities in shallow seas are associated with either high thermal seasonality (chiefly in temperate latitudes) or highly seasonal trophic supplies (at any latitude), which exclude species that are adapted to narrow ranges of those variables.  相似文献   

8.
Little is known about the processes regulating species richness in deep‐sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species–energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep‐sea fossil record of benthic foraminifera and statistical meta‐analyses of temperature‐richness and productivity‐richness relationships in 10 deep‐sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature‐richness relationship in the deep‐sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species.  相似文献   

9.
Ecological, historical, and evolutionary hypotheses are important to explain geographical diversity gradients in many clades, but few studies have combined them into a single analysis allowing a comparison of their relative importance. This study aimed to evaluate the relative importance of ecological, historical, and evolutionary hypotheses in explaining the current global distribution of non‐marine turtles, a group whose distribution patterns are still poorly explored. We used data from distribution range maps of 336 species of non‐marine turtles, environmental layers, and phylogeny to obtain richness estimates of these animals in 2° × 2° cells and predictors related to ecological, evolutionary and historical hypotheses driving richness patterns. Then we used a path analysis to evaluate direct and indirect effects of the predictors on turtle richness. Ancestral area reconstruction was also performed in order to evaluate the influence of time‐for‐speciation in the current diversity of the group. We found that environmental variables had the highest direct effects on non‐marine turtle richness, whereas diversification rates and area available in the last 55 million yr minimally influenced turtle distributions. We found evidence for the time‐for‐speciation effect, since regions colonized early were generally richer than recently colonized regions. In addition, regions with a high number of colonization events had a higher number of turtle species. Our results suggested that ecological processes may influence non‐marine turtle richness independent of diversification rates, but they are probably related to dispersal abilities. However, colonization time was also an important component that must be taken into account. Finally, our study provided additional support for the importance of ecological (climate and productivity) and historical (time‐for‐speciation and dispersal) processes in shaping current biodiversity patterns.  相似文献   

10.
Oceans contain the largest living volume of the “blue” planet, inhabited by approximately 235–250,000 described species, all groups included. They only represent some 13% of the known species on the Earth, but the marine biomasses are really huge. Marine phytoplankton alone represents half the production of organic matter on Earth while marine bacteria represent more than 10%. Life first appeared in the oceans more than 3.8 billion years ago and several determining events took place that changed the course of life, ranging from the development of the cell nucleus to sexual reproduction going through multi-cellular organisms and the capture of organelles. Of the 31 animal phyla currently listed, 12 are exclusively marine phyla and have never left the ocean. An interesting question is to try to understand why there are so few marine species versus land species? This pattern of distribution seems pretty recent in the course of Evolution. From an exclusively marine world, since the beginning until 440 million years ago, land number of species much increased 110 million years ago. Specific diversity and ancestral roles, in addition to organizational models and original behaviors, have made marine organisms excellent reservoirs for identifying and extracting molecules (> 15,000 today) with pharmacological potential. They also make particularly relevant models for both fundamental and applied research. Some marine models have been the source of essential discoveries in life sciences. From this diversity, the ocean provides humankind with renewable resources, which are highly threatened today and need more adequate management to preserve ocean habitats, stocks and biodiversity.  相似文献   

11.
The biogeochemical cycling of zinc (Zn) is intimately coupled with organic carbon in the ocean. Based on an extensive new sedimentary Zn isotope record across Earth's history, we provide evidence for a fundamental shift in the marine Zn cycle ~800 million years ago. We discuss a wide range of potential drivers for this transition and propose that, within available constraints, a restructuring of marine ecosystems is the most parsimonious explanation for this shift. Using a global isotope mass balance approach, we show that a change in the organic Zn/C ratio is required to account for observed Zn isotope trends through time. Given the higher affinity of eukaryotes for Zn relative to prokaryotes, we suggest that a shift toward a more eukaryote‐rich ecosystem could have provided a means of more efficiently sequestering organic‐derived Zn. Despite the much earlier appearance of eukaryotes in the microfossil record (~1700 to 1600 million years ago), our data suggest a delayed rise to ecological prominence during the Neoproterozoic, consistent with the currently accepted organic biomarker records.  相似文献   

12.
Mosses and lichens are the dominant macrophytes of the Antarctic terrestrial ecosystem. Using occurrence data from existing databases and additional published records, we analyzed patterns of moss and lichen species diversity on the Antarctic Peninsula at both a regional scale (1°latitudinal bands) and a local scale (52 and 56 individual snow‐ and ice‐free coastal areas for mosses and lichens, respectively) to test hypothesized relationships between species diversity and environmental factors, and to identify locations whose diversity may be particularly poorly represented by existing collections and online databases. We found significant heterogeneity in sampling frequency, number of records collected, and number of species found among analysis units at the two spatial scales, and estimated species richness using projected species accumulation curves to account for potential biases stemming from sample heterogeneity. Our estimates of moss and lichen richness for the entire Antarctic Peninsula region were within 20% of the total number of known species. Area, latitude, spatial isolation, mean summer temperature, and penguin colony size were considered as potential covariates of estimated species richness. Moss richness was correlated with isolation and latitude at the local scale, while lichen richness was correlated with summer mean temperature and, for 17 sites where penguins where present with <20 000 breeding pairs, penguin colony size. At the regional scale, moss richness was correlated with temperature and latitude. Lichen richness, by contrast, was not significantly correlated with any of the variables considered at the regional scale. With the exception of temperature, which explained 91% of the variation in regional moss diversity, explained variance was very low. Our results show that patterns of moss and lichen biodiversity are highly scale‐dependent and largely unexplained by the biogeographic variables found important in other systems.  相似文献   

13.
A unique long‐term phenological data set of over 110 000 records of 1st cutting dates for haymaking across Germany, spanning the years 1951–2011 was examined. In addition, we analyzed a long‐term data set in the beginning of flowering of meadow foxtail (Alopecurus pratensis) covering the last 20 years. We tested whether hay‐cutting dates (based on a human decision when to cut) showed trends, temperature relationships and spatial distribution similar to the development of this grassland species, and if these trends could be related to climate change. The timing of 1st hay cut was strongly influenced (P < 0.001) by altitude, latitude and longitude, revealing in particular an east‐west gradient. Over the past 60 years, there have been changes in the timing of hay cutting, with the majority of German federal states having significant (P < 0.05) advances of approximately 1 day per decade. Overall, the response to mean March–May temperature was highly significant (?2.87 days °C?1; P < 0.001). However, in the last 20 years, no federal state experienced a significant advance and two were even significantly delayed. The temperature response in this post‐1991 period became less or non‐significant for most of the federal states. We suggest that differences in agricultural land use and unequal uptakes of Agri‐Environment Schemes (AES, which encourage later cutting) were likely to be responsible for the regional differences, while the general increase in AES appears to have confounded the overall trend in hay cutting in the last 20 years. Trends over time and responses to temperature were small relative to those associated with the phenology of meadow foxtail. The advance in phenology of this species is greater than the advance in hay cutting, implying that hay cutting may not be keeping pace with a changing climate, which may have a positive effect on grassland ecology.  相似文献   

14.
Models applying space-for-time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump-shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation- and latitude-driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion.  相似文献   

15.
Aim To test whether marine biogeographical patterns observed at the community level are also important within species. It is postulated that historical hydrogeographic barriers have driven in situ diversification. Location The intertidal and shallow subtidal zones of southern Australia, New Zealand and nearby islands. Australia's temperate marine communities are characterized by a high degree of endemism and show strong biogeographical structure along an east–west axis. Methods Phylogeographical analysis of the widespread asteriid sea‐star Coscinasterias muricata Verrill across southern Australia and New Zealand. Forty‐two samples from 27 locations were included in phylogenetic analyses of mitochondrial (CO1; control region) and nuclear (ITS2) DNA sequences. Results Analysis of mtDNA revealed a deep phylogenetic split within Australian C. muricata, strongly correlated with latitude. ‘Northern’ haplotypes (latitude ≤ 37.6° S, nine sites, 15 samples) were 7.3–9.4% divergent from ‘southern’ haplotypes (latitude ≥ 37.6° S, 19 sites, 27 samples), consistent with late Pliocene separation. Eastern and western representatives of the ‘northern’ clade were 0.5–1.0% divergent, probably reflecting Pleistocene isolation. The ‘southern’ clade of Australia is also represented in New Zealand, indicating Pleistocene oceanic dispersal. Nuclear DNA (ITS2) sequences yielded relatively little phylogenetic resolution, but were generally congruent with mtDNA‐based groupings. Main conclusions The phylogeographical pattern detected within Australian C. muricata closely resembles marine biogeographical groupings proposed on the basis of community and species distributions. Recurring evolutionary patterns may have been driven by the hydrographic history of southern Australia. Specifically, we suggest that Plio‐Pleistocene temperature change and the repeated opening and closure of Bass Strait promoted allopatric divergence and perhaps cryptic speciation in C. muricata.  相似文献   

16.
Latitudinal diversity gradients are a general feature of the terrestrial realm. Fewer studies have addressed marine habitats and those concerning soft sediments have not reported such consistent trends. This study investigates global patterns of macroin-vertebrate α-diversity in estuarine tidal flats. A literature search was conducted to collect data on species diversity as well as various physical, chemical and biological factors that may prove useful in investigating the cause of trends. Regression analysis revealed a significant association between latitude and diversity expressed as Simpson's index of concentration (r2= 0.44). the index being lower (i.e. diversity higher) at low latitudes. There was no significant association between diversity and either available estuary area or annual rainfall. A significant, although weak, relationship between diversity and mean annual temperature was apparent (r2= 0. 23), together with an increase in species to family ratio in the hottest areas. This could suggest greater evolutionary speed in the tropics (due to temperature increasing mutation rates and generation times) and may provide an explanation for the trend. However, a greater amount of variation is explained by latitude alone and it is suggested that a primary cause of the latitudinal cline in estuarine diversity may be the greater effective evolutionary time available for communities in the tropics, temperate estuaries being regularly disturbed by glaciation during the last 1.8 million years.  相似文献   

17.
Ma C  Yang P  Jiang F  Chapuis MP  Shali Y  Sword GA  Kang L 《Molecular ecology》2012,21(17):4344-4358
The migratory locust, Locusta migratoria, is the most widely distributed grasshopper species in the world. However, its global genetic structure and phylogeographic relationships have not been investigated. In this study, we explored the worldwide genetic structure and phylogeography of the locust populations based on the sequence information of 65 complete mitochondrial genomes and three mitochondrial genes of 263 individuals from 53 sampling sites. Although this locust can migrate over long distances, our results revealed high genetic differentiation among the geographic populations. The populations can be divided into two different lineages: the Northern lineage, which includes individuals from the temperate regions of the Eurasian continent, and the Southern lineage, which includes individuals from Africa, southern Europe, the Arabian region, India, southern China, South‐east Asia and Australia. An analysis of population genetic diversity indicated that the locust species originated from Africa. Ancestral populations likely separated into Northern and Southern lineages 895 000 years ago by vicariance events associated with Pleistocene glaciations. These two lineages evolved in allopatry and occupied their current distributions in the world via distinct southern and northern dispersal routes. Genetic differences, caused by the long‐term independent diversification of the two lineages, along with other factors, such as geographic barriers and temperature limitations, may play important roles in maintaining the present phylogeographic patterns. Our phylogeographic evidence challenged the long‐held view of multiple subspecies in the locust species and tentatively divided it into two subspecies, L. m. migratoria and L. m. migratorioides.  相似文献   

18.
Most of the world''s living marine resources inhabit coastal environments, where average thermal conditions change predictably with latitude. These coastal latitudinal temperature gradients (CLTG) coincide with important ecological clines,e.g., in marine species diversity or adaptive genetic variations, but how tightly thermal and ecological gradients are linked remains unclear. A first step is to consistently characterize the world''s CLTGs. We extracted coastal cells from a global 1°×1° dataset of weekly sea surface temperatures (SST, 1982–2012) to quantify spatial and temporal variability of the world''s 11 major CLTGs. Gradient strength, i.e., the slope of the linear mean-SST/latitude relationship, varied 3-fold between the steepest (North-American Atlantic and Asian Pacific gradients: −0.91°C and −0.68°C lat−1, respectively) and weakest CLTGs (African Indian Ocean and the South- and North-American Pacific gradients: −0.28, −0.29, −0.32°C lat−1, respectively). Analyzing CLTG strength by year revealed that seven gradients have weakened by 3–10% over the past three decades due to increased warming at high compared to low latitudes. Almost the entire South-American Pacific gradient (6–47°S), however, has considerably cooled over the study period (−0.3 to −1.7°C, 31 years), and the substantial weakening of the North-American Atlantic gradient (−10%) was due to warming at high latitudes (42–60°N, +0.8 to +1.6°C,31 years) and significant mid-latitude cooling (Florida to Cape Hatteras 26–35°N, −0.5 to −2.2°C, 31 years). Average SST trends rarely resulted from uniform shifts throughout the year; instead individual seasonal warming or cooling patterns elicited the observed changes in annual means. This is consistent with our finding of increased seasonality (i.e., summer-winter SST amplitude) in three quarters of all coastal cells (331 of 433). Our study highlights the regionally variable footprint of global climate change, while emphasizing ecological implications of changing CLTGs, which are likely driving observed spatial and temporal clines in coastal marine life.  相似文献   

19.
Aim Variations in body size are well established for many taxa of endotherms and ectotherms, but remain poorly documented for marine invertebrates. Here we explore how body size varies with latitude, temperature and productivity for a major marine invertebrate class, the Bivalvia. Location Continental shelves world‐wide. Methods We used regression models to assess univariate relationships between size and latitude as well as multivariate relationships between size, latitude and environmental parameters (mean and seasonality in temperature and mean productivity). The dataset consisted of 4845 species in 59 families from shelf depths at all latitudes in the Pacific and Atlantic oceans. We also used Blomberg's K to assess whether size–latitude relationships show phylogenetic signal, and test whether functional groups based on feeding mode, substrate relationships, mobility and fixation can account for observed size–latitude trends. Results Size–latitude trends are taxonomically and geographically common in bivalves, but vary widely in sign and strength – no simple explanations based on environmental parameters, phylogeny or functional group hold across all families. Perhaps most importantly, we found that the observed trends vary considerably between hemispheres and among coastlines. Main conclusions Broadly generalizable macroecological patterns in inter‐specific body size may not exist for marine invertebrates. Although size–latitude trends occur in many bivalve lineages, the underlying mechanisms evidently differ among regions and/or lineages. Fully understanding macroecological patterns requires truly global datasets as well as information about the evolutionary history of specific lineages and regions.  相似文献   

20.
Environmental changes over the Plio‐Pleistocene have been key drivers of speciation patterns and genetic diversification in high‐latitude and mesic environments, yet comparatively little is known about the evolutionary history of species in arid environments. We applied phylogenetic and phylogeographic analyses to understand the evolutionary history of Warramaba grasshoppers from the Australian arid zone, a group including sexual and parthenogenetic lineages. Sequence data (mitochondrial COI) showed that the four major sexual lineages within Warramaba most likely diverged in the Pliocene, around 2–7 million years ago. All sexual lineages exhibited considerable phylogenetic structure. Detailed analyses of the hybrid parthenogenetic species W. virgo and its sexual progenitors showed a pattern of high phylogenetic diversity and phylogeographic structure in northern lineages, and low diversity and evidence for recent expansion in southern lineages. Northern sexual lineages persisted in localized refugia over the Pleistocene, with sustained barriers promoting divergence over this period. Southern parts of the present range became periodically unsuitable during the Pleistocene, and it is into this region that parthenogenetic lineages have expanded. Our results strongly parallel those for sexual and parthenogenetic lineages of the gecko Heteronotia from the same region, indicating a highly general effect of Plio‐Pleistocene environmental change on diversification processes in arid Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号