首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Pathogenicity of molecularly cloned bovine leukemia virus.   总被引:1,自引:1,他引:0       下载免费PDF全文
To delineate the mechanisms of bovine leukemia virus (BLV) pathogenesis, four full-length BLV clones, 1, 8, 9, and 13, derived from the transformed cell line FLK-BLV and a clone construct, pBLV913, were introduced into bovine spleen cells by microinjection. Microinjected cells exhibited cytopathic effects and produced BLV p24 and gp51 antigens and infectious virus. The construct, pBLV913, was selected for infection of two sheep by inoculation of microinjected cells. After 15 months, peripheral blood mononuclear cells from these sheep served as inocula for the transfer of infection to four additional sheep. All six infected sheep seroconverted to BLV and had detectable BLV DNA in peripheral blood mononuclear cells after amplification by polymerase chain reaction. Four of the six sheep developed altered B/T-lymphocyte ratios between 33 and 53 months postinfection. One sheep died of unrelated causes, and one remained hematologically normal. Two of the affected sheep developed B lymphocytosis comparable to that observed in animals inoculated with peripheral blood mononuclear cells from BLV-infected cattle. This expanded B-lymphocyte population was characterized by elevated expression of B-cell surface markers, spontaneous blastogenesis, virus expression in vitro, and increased, polyclonally integrated provirus. One of these two sheep developed lymphocytic leukemia-lymphoma at 57 months postinfection. Leukemic cells had the same phenotype and harbored a single, monoclonally integrated provirus but produced no virus after in vitro cultivation. The range in clinical response to in vivo infection with cloned BLV suggests an important role for host immune response in the progression of virus replication and pathogenesis.  相似文献   

4.
The bovine leukemia virus (BLV) is an oncogenic retrovirus that is associated with the development of persistent lymphocytosis (PL) and lymphoma in cattle. While B lymphocytes have been shown to be the primary cellular target of BLV, recent studies suggest that some T lymphocytes and monocytes may be infected by the virus. Because virally altered functions of monocytes and/or T cells could contribute to the development of lymphoproliferative disease, we sought to clarify the distribution of the BLV provirus in subpopulations of peripheral blood mononuclear cells in seropositive cows with and without PL. CD2+ T cells, monocytes, and CD5+ and CD5- B cells were sorted by flow cytometry and tested for the presence of BLV by single-cell PCR. We did not obtain convincing evidence that peripheral blood monocytes or T lymphocytes contain the BLV provirus in seropositive cows with or without PL. In seropositive cows without PL (n=14), BLV-infected CD5+ and CD5- B cells accounted for 9.2% +/- 19% and 0.1% +/- 1.8% of circulating B lymphocytes, respectively. In cows with PL (n=5), BLV-infected CD5+ and CD5- B cells accounted for 66% +/- 4.8% and 13.9% +/- 6.6% of circulating B lymphocytes, respectively. The increase in lymphocyte numbers in cows with PL was entirely attributable to the 45-fold and 99-fold expansions of infected CD5+ and CD5- B-cell populations, respectively. Our results demonstrate that B cells are the only mononuclear cells in peripheral blood that are significantly infected with BLV. On the basis of the absolute numbers of infected cells in seropositive, hematologically normal animals, there appear to be differences in susceptibility to viral spread in vivo that may be under the genetic control of the host.  相似文献   

5.
6.
C A Diglio  C E Piper  J F Ferrer 《In vitro》1978,14(6):502-505
Several factors that influence the sensitivity of the syncytia infectivity assay for the bovine leukemia virus (BLV) and BLV-infected lymphocytes have been examined. The use of early-passage indicator bovine embryonic spleen (BESP) cells and their pretreatment with diethylamino-ethyl-dextran (DEAE-D) was essential for optimal sensitivity. Polybrene was less effective than DEAE-D. The combination of DEAE-D and polybrene was more effective than DEAE-D alone when BLV-infected leukocytes were used as the inoculum, but not when the inoculum was a cell-free BLV preparation. Using BESP cell passages 4 to 11 as indicators, reproducible titers were obtained when aliquots of the same virus stock were assayed at different times after freezer storage. When assaying peripheral blood lymphocytes from infected cattle, optimal syncytia responses were observed consistently by inoculating 5 X 10(6) viable lymphocytes per 60-mm Falcon dish. Centrifugation of peripheral blood leukocytes from BLV-infected cattle in discontinuous bovine serum albumin gradients can be used to separate a subpopulation of infected lymphocytes. Use of this subpopulation as the inoculum, rather than unseparated buffy-coat leukocytes, greatly increases the sensitivity of the syncytia infectivity assay.  相似文献   

7.
Summary Several factors that influence the sensitivity of the syncytia infectivity assay for the bovine leukemia virus (BLV) and BLV-infected lymphocytes have been examined. The use of early-passage indicator bovine embryonic spleen (BESP) cells and their pretreatment with diethylamino-ethyl-dextran (DEAE-D) was essential for optimal sensitivity. Polybrene was less effective than DEAE-D. The combination of DEAE-D and polybrene was more effective than DEAE-D alone when BLV-infected leukocytes were used as the inoculum, but not when the inoculum was a cell-free BLV preparation. Using BESP cell passages 4 to 11 as indicators, reproducible titers were obtained when aliquots of the same virus stock were assayed at different times after freezer storage. When assaying peripheral blood lymphocytes from infected cattle, optimal syncytia responses were observed consistently by inoculating 5×106 viable lymphocytes per 60-mm Falcon dish. Centrifugation of peripheral blood leukocytes from BLV-infected cattle in discontinuous bovine serum albumin gradients can be used to separate a subpopulation of infected lymphocytes. Use of this subpopulation as the inoculum, rather than unseparated buffy-coat leukocytes, greatly increases the sensitivity of the syncytia infectivity assay. This work was supported in part by USPHS Grant 1-PO 1-CA-14193-03, Pennsylvania Department of Agriculture Grant ME4, and USDA Cooperative Agreement 12-14-100-10, 675 (45).  相似文献   

8.
9.
The bovine leukaemia virus (BLV) is an exogenous retrovirus that is closely related to the human T cell leukaemia viruses. Genetic resistance and susceptibility to persistent lymphocytosis (PL), an advanced subclinical stage of infection characterized by a polyclonal expansion of the infected B cell population, have been mapped to structural motifs in bovine MHC DRB3 (class II) alleles. To determine whether alleles of DRB3 influence the number of BLV-infected B cells in peripheral blood, seven pairs of Holstein cows naturally infected with BLV were matched on the basis of DRB3 genotype (resistance or susceptibility to PL), age, and year of seroconversion. Flow cytometry was used to separate B cell populations that then were tested for the presence of provirus by a single-cell PCR methodology. Animals with the PL-resistance associated DRB3.2*11 allele had significantly fewer BLV-infected B cells than did age- and seroconversion-matched cows with DRB3 alleles associated with susceptibility to PL. Our results demonstrate that DRB3 or a closely linked gene may play a direct role in controlling the number of BLV-infected peripheral B cells in vivo . Association of MHC class II alleles with resistance to disease progression in cattle naturally infected with BLV provides a unique immunogenetic model for the study of host resistance to human and other animal retroviral infections.  相似文献   

10.
11.
The role of the bovine major histocompatibility system (BoLA) in subclinical bovine leukemia virus (BLV) infection was investigated in a herd of Holstein-Friesian cows (n=240). The BoLA W8.1 allele was negatively associated with the presence of antibodies to the major BLV envelope glycoprotein, BLV-gp51 (corrected P<0.001, relative risk =0.31). These results suggest that a BoLA-linked gene(s) may influence the early spread of BLV infection. Since B cells are the primary target of BLV infection, we then determined the relationship between BoLA-A locus phenotypes and B-cell numbers in peripheral blood of seropositive and seronegative cows. There were no significant differences between BoLA-A alleles for any hematological parameter in seronegative cows. Seropositive cows with the W12.1 allele had significantly greater absolute numbers of lymphocytes per microliter and B cells per microliter than did seropositive cows with other BoLA-A phenotypes (P<0.01, respectively). The average effect associated with the W12.1 allele in BLV-infected cows was an increase of 2010 B cells per microliter of whole blood relative to BLV-infected cows with other BoLA-A phenotypes. These results demonstrate that susceptibility to the polyclonal expansion of BLV-infected B lymphocytes is associated with the W12.1 allele in Holstein-Friesian cattle. Compared with results of a previous study in a herd of Shorthorn cattle, it appears that resistance and susceptibility to subclinical progression of BLV infection are associated with different BoLA-A locus alleles in different cattle breeds.Abbreviations used in this paper AGID agar gel immunodiffusion - BLV bovine leukemia virus - BoLA bovine lymphocyte antigen - EBL enzootic bovine leukosis - HLA human leukocyte antigen - MHC major histocompatibility complex - PL persistent lymphocytosis  相似文献   

12.
The gag gene encoded protein, p24 of bovine leukemia virus (BLV), was cloned and expressed as thioredoxin-6xHis-p24 protein in Escherichia coli. The bacterial cells carrying plasmid pT7THis-p24 expressed the protein of 38 kDa that was detected by immunoblotting analysis using anti-p24 monoclonal antibodies and sera from BLV infected cattle and sheep. The purified p24 fusion protein was shown to be sensitive and specific for detection of BLV antibodies in the infected cattle.  相似文献   

13.
Bovine leukemia virus (BLV) is an oncogenic retrovirus associated with B-cell lymphocytosis, leukemia, and lymphosarcoma in the ovine and bovine species. We have recently reported that in sheep, BLV protects the total population of peripheral blood mononuclear cells (PBMCs) from ex vivo spontaneous apoptosis. This global decrease in the apoptosis rates resulted from both direct and indirect mechanisms which allow extension of cell survival. Although sheep are not natural hosts for BLV, these animals are prone to develop virus-induced leukemia at very high frequencies. Most infected cattle, however, remain clinically healthy. This difference in the susceptibilities to development of leukemia in these two species might be related to alterations of the apoptotic processes. Therefore, we designed this study to unravel the mechanisms of programmed cell death in cattle. We have observed that PBMCs from persistently lymphocytotic BLV-infected cows were more susceptible to spontaneous ex vivo apoptosis than cells from uninfected or aleukemic animals. These higher apoptosis rates were the consequence of an increased proportion of B cells exhibiting lower survival abilities. About one-third of the BLV-expressing cells did not survive the ex vivo culture conditions, demonstrating that viral expression is not strictly associated with cell survival in cattle. Surprisingly, culture supernatants from persistently lymphocytotic cows exhibited efficient antiapoptotic properties on both uninfected bovine and uninfected ovine cells. It thus appears that indirect inhibition of cell death can occur even in the presence of high apoptosis rates. Together, these results demonstrate that the protection against spontaneous apoptosis associated with BLV is different in cattle and in sheep. The higher levels of ex vivo apoptosis occurring in cattle might indicate a decreased susceptibility to development of leukemia in vivo.  相似文献   

14.
15.
16.
Viruses have developed strategies to counteract the apoptotic response of the infected host cells. Modulation of apoptosis is also thought to be a major component of viral persistence and progression to leukemia induced by retroviruses like human T-lymphotropic virus type 1 (HTLV-1) and bovine leukemia virus (BLV). Here, we analyzed the mechanism of ex vivo apoptosis occurring after isolation of peripheral blood mononuclear cells from BLV-infected sheep. We show that spontaneous apoptosis of ovine B lymphocytes requires at least in part a caspase 8-dependent pathway regardless of viral infection. Cell death is independent of cytotoxic response and does not involve the tumor necrosis factor alpha/NF-kappaB/nitric oxide synthase/cyclooxygenase pathway. In contrast, pharmaceutical depletion of reduced glutathione (namely, gamma-glutamyl-l-cysteinyl-glycine [GSH]) by using ethacrynic acid or 1-pyrrolidinecarbodithioic acid specifically reverts inhibition of spontaneous apoptosis conferred indirectly by protective BLV-conditioned media; inversely, exogenously provided membrane-permeable GSH-monoethyl ester restores cell viability in B lymphocytes of BLV-infected sheep. Most importantly, intracellular GSH levels correlate with virus-associated protection against apoptosis but not with general inhibition of cell death induced by polyclonal activators, such as phorbol esters and ionomycin. Finally, inhibition of apoptosis does not correlate with the activities of GSH peroxidase and GSH reductase. In summary, our data fit into a model in which modulation of the glutathione system is a key event involved in indirect inhibition of apoptosis associated with BLV. These observations could have decisive effects during therapeutic treatment of delta-retroviral pathogenesis.  相似文献   

17.
18.
Bovine leukemia virus (BLV) and human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) belong to the same subfamily of oncoviruses. Defective HTLV-1 proviral genomes have been found in more than half of all patients with adult T-cell leukemia examined. We have characterized the genomic structure of integrated BLV proviruses in peripheral blood lymphocytes and tumor tissue taken from animals with lymphomas at various stages. Genomic Southern hybridization with SacI, which generates two major fragments of BLV proviral DNA, yielded only bands that corresponded to a full-size provirus in all of 23 cattle at the lymphoma stage and in 7 BLV-infected but healthy cattle. Long PCR with primers located in long terminal repeats clearly demonstrated that almost the complete provirus was retained in all of 27 cattle with lymphomas and in 19 infected but healthy cattle. However, in addition to a PCR product that corresponded to a full-size provirus, a fragment shorter than that of the complete virus was produced in only one of the 27 animals with lymphomas. Moreover, when we performed conventional PCR with a variety of primers that spanned the entire BLV genome to detect even small defects, PCR products were produced that specifically covered the entire BLV genome in all of the 40 BLV-infected cattle tested. Therefore, it appears that at least one copy of the full-length BLV proviral genome was maintained in each animal throughout the course of the disease and, in addition, that either large or small deletions of proviral genomes may be very rare events in BLV-infected cattle.  相似文献   

19.
Bovine leukemia virus (BLV) is a complex B-lymphotrophic retrovirus of cattle and the causative agent of enzootic bovine leukosis. Serum antibody in infected animals does not correlate with protection from disease, yet only some animals develop severe disease. While a cytotoxic T-lymphocyte response may be responsible for directing BLV pathogenesis, this possibility has been left largely unexplored, in part since the lack of readily established cytotoxic target cells in cattle has hampered such studies. Using long-term naturally infected alymphocytic (AL) cattle, we have established the existence of cytotoxic T-lymphocyte response against BLV envelope proteins (Env; gp51/gp30). In vitro-expanded peripheral blood mononuclear (PBM) cell effector populations consisted mainly of gammadelta(+) (>40%), CD4(+) (>35%), and CD8(+) (>10%) T lymphocytes. Specific lysis of autologous fibroblasts infected with recombinant vaccinia virus (rVV) delivering the BLV env gene ranged from 30 to 65%. Depletion studies indicated that gammadelta(+) and not CD8(+) T cells were responsible for the cytotoxicity against autologous rVVenv-expressing fibroblasts. Additionally, cultured effector cells lysed rVVenv-expressing autologous fibroblasts and rVVenv-expressing xenogeneic targets similarly, suggesting a lack of genetic restricted killing. Restimulation of effector populations increased the proportion of gammadelta(+) T cells and concomitantly Env-specific cytolysis. Interestingly, culture of cells from BLV-negative or persistently lymphocytic cattle failed to elicit such cytotoxic responses or increase in gammadelta(+) T-cell numbers. These results imply that cytotoxic gammadelta(+) T lymphocytes from only AL cattle recognize BLV Env without a requirement for classical major histocompatibility complex interactions. It is known that gammadelta(+) T lymphocytes are diverse and numerous in cattle, and here we show that they may serve a surveillance role during natural BLV infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号