首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the localization of alpha-keratin in the sheep placenta using an alpha-keratin-specific monoclonal antibody (MAb) SBU-1, and examined the feasibility of using this MAb as a marker for determining the purity of isolated uninucleate cells from the placentomal trophoblast. At about 30-50 days of gestation the placentomal and interplacentomal uninucleate cells and some binucleate cells were stained by SBU-1, whereas only the apical region of the syncytial cytoplasm was stained with this MAb. Other cells stained included the uterine and endometrial glandular epithelial cells and fibroblast-like cells in the endometrium and chorionic villi. At about 100-130 days of gestation only the trophoblast uninucleate cells were stained by SBU-1. Approximately 60% of cells isolated from placentomes at 100-130 days of gestation were stained by SBU-1, and they had similar morphological features to the trophoblast uninucleate cells. The number of binucleate cells present was confirmed by their affinity for MAb SBU-3. These results show that MAb SBU-1 is an excellent marker for trophoblast uninucleate cells from placenta of sheep at the later stages of pregnancy.  相似文献   

2.
Placentation involves considerable growth and reorganization of both maternal and fetal tissues. In this investigation, immunohistochemical localization of the proliferation marker Ki-67 antigen was used to monitor cell division during placentation in mares. Endometrial biopsies were obtained from eight mares between day 14 and day 26 of pregnancy and from eight anoestrous mares that had been treated with various combinations of progesterone and oestrogen. Samples of endometrium and fetal membranes were obtained from 19 mares carrying normal horse conceptuses between day 30 and day 250 of gestation and from three failing extraspecific donkey-in-horse pregnancies. Proliferation in the superficial strata of the endometrium was increased by day 18 of gestation and this effect could be mimicked by supplementing with oestradiol benzoate during the last 6 days of a prolonged period (18-36 days) of progesterone administration. Fetal chorionic girdle cells were proliferating vigorously at days 30-32 of gestation, but stopped dividing after they invaded the endometrium, while the trophoblast cells of the allantochorion showed an increase in mitotic activity after day 38. The luminal epithelium of the endometrium started to proliferate only after the primary villi of the true epitheliochorial placenta had been formed, and during days 58-70 this effect was seen only in the pregnant horn in which placentation was further advanced. During the second half of gestation, most of the mitotic activity was confined to the periphery of the microcotyledons which were still growing. In the donkey-in-horse pregnancies, proliferation rates of the maternal and fetal epithelial at day 70 of gestation were markedly reduced in areas of heavy endometrial lymphocyte infiltration and poor placentation. These results provide a basis for further studies on factors that influence invasive and non-invasive placentation.  相似文献   

3.
4.
Enhanced prostaglandin production and release by the placenta is an essential element in the normal transition to labour in many animal species. In sheep, expression of prostaglandin G/H synthase (PGHS) is the central enzyme regulating this process. In this study immunohistochemistry was used to examine the distribution of cells expressing PGHS-1 and PGHS-2 in ovine placenta in association with spontaneous parturition (n = 6) and glucocorticoid-induced labour (n = 5). Labour was induced in ewes after the intrafetal injection of betamethasone on day 131 of gestation. Animals administered an intrafetal injection of isotonic saline (n = 5) acted as non-labour controls. In placentomes collected from all groups, immunoreactive PGHS-1 was present in the mononuclear trophoblast cells of the fetal placenta. Cells in the maternal mesenchyme and epithelial syncytium were weakly immunopositive for this enzyme. PGHS-1 immunoreactivity was also demonstrated in the endothelial cells of the chorionic vessels. The PGHS-2 isozyme was localized exclusively to the trophoblast epithelial cells. Immunoreactive PGHS-2 was not detectable in the maternal epithelial syncytium or the stroma of the cotyledons. The binucleate cells of the fetal placenta were consistently immunonegative for both PGHS isozymes. These results indicate that the cellular localization of PGHS-1 and PGHS-2 in ovine placenta does not change during the last 15 days of pregnancy. Co-localization of these isozymes indicates that the source of arachidonic acid and the site of prostanoid formation are the same. Quantitation of the percentage area of positive staining for PGHS-1 and PGHS-2 using image analysis software demonstrated a significant increase in PGHS-2 in the fetal trophoblast after glucocorticoid-induced labour and spontaneous parturition. This finding indicates that increased formation of the PGHS-2 isozyme is responsible for the large increase in prostaglandin production by the ovine placenta at term labour.  相似文献   

5.
Placental growth and development is crucial for successful pregnancy. The aim of this study was to characterize the activity and localization of the matrix metalloproteinase 2 (MMP-2) and MMP-9, which are capable of degrading basement membrane collagen (predominantly collagen type IV), and their endogenous tissue inhibitor of matrix metalloproteinases (TIMPs), in amniotic fluid and in the developing ovine placenta. Cell deletion by apoptosis during placental development was also examined. Zymography with gelatin as substrate indicated that MMP-2 (72 kDa gelatinase A; predominantly latent form) was present in increasing amounts in amniotic fluid from day 70 of gestation to labour (days 140-145), and MMP-9 (92 kDa gelatinase B; predominantly latent form) was detectable from day 125 to labour; there was no increase in MMP-2 or -9 in labour. A broad range of TIMPs was detected in amniotic fluid; the molecular masses corresponded to TIMP-1, -2 and -3. Immunohistochemical techniques localized MMP-2, MMP-9 and TIMP-3 in the sheep placenta, predominantly in the trophoblast layer in uninucleate, but not binucleate, cells. However, MMP-2 and -9 activated proteins in placental homogenates were low throughout pregnancy. Apoptosis was identified by morphological criteria and also by TdT-mediated dUTP nick end labelling. Apoptosis was present in discrete regions in the placenta, predominantly in trophoblast cells near the tips and the basal regions of the fetomaternal interdigitations. During pregnancy the sheep placenta becomes more complex and the area of the fetomaternal interface increases. MMP-2 and -9 are likely to be involved in breaking down basement membranes to allow cell migration during this process. It is suggested that digestion of supporting extracellular matrix may trigger apoptosis and in some way increase the branching pattern in the villi.  相似文献   

6.
Binucleate cells in ruminant trophectodermal epithelium are unique in that they form part of the tight junction as they migrate across it, maintaining the ionic barrier seal to the internal milieu of the fetus. Such participation imposes considerable constraints on the cell migration because membrane cannot flow through a tight junction. We report quantitative ultrastructural immunocytochemical evidence for vesicle membrane insertion into the binucleate cell plasmalemma which allows the cells to form a pseudopodium past the tight junction. This pseudopodium increases continuously in area by vesicle insertion and develops a close apposition to the plasmalemma of the fetomaternal syncytium which constitutes the fetomaternal boundary in the placenta of the sheep and goat. Enventually the apposed membranes of the binucleate cell pseudopodium and the syncytium fuse by vesiculation and the cytoplasm and nuclei of the binucleate cell merge into the fetomaternal syncytium. The binucleate cell plasmalemma remaining on the trophectodermal side of the tight junction is blebbed off into, and phagocytosed by, the uninucleate trophectodermal cells between which the binucleate cell passed. This process permits the delivery of the binucleate cell granules to the maternal side of the placenta but none of the fetal molecules expressed on the plasma membrane of the binucleate cells are exposed to potential maternal immunological rejection.  相似文献   

7.
The present study was designed to characterize prostaglandin dehydrogenase (PGDH) mRNA expression in critical intrauterine tissues of pregnant baboons in late gestation and at spontaneous labor. In addition, we determined regulatory effects of betamethasone in vivo on chorionic and placental PGDH mRNA expression. PGDH mRNA was present in chorion, decidua, lower uterine segment, fundal myometrium, and cervix in late gestation but undetectable in amnion. PGDH mRNA significantly decreased in decidua and cervix during late gestation and in chorion and fundus during spontaneous labor. PGDH mRNA in lower uterine segment, decidua, cervix, and placenta was unchanged during spontaneous labor from late gestation levels. Betamethasone had no effect on chorionic and placental PGDH mRNA expression. In summary, our data suggest that PGDH mRNA expression is tightly controlled in gestation- and tissue-specific manners. Decreased chorionic and fundal PGDH abundance during labor and decreased decidua and cervical PGDH mRNA in late gestation allow local uterine prostaglandin accumulation and assist prostaglandin transfer to myometrium. Local differences in PGDH function may regulate tissue- and region-specific requirements for prostaglandins to promote and complete labor.  相似文献   

8.
The mechanism of iron transfer by extravasation of maternal blood in the maternal-fetal interface and the subsequent phagocytosis of the erythrocytes by the trophoblast cells was described in ovine, bovine and other species. This research was performed due to the absence of studies on this process in the goat. Fragments of placentomes were obtained from 9 adult goats of an unspecified breed and were separated into Groups A, B and C, based on 90, 120 and 150 d of gestation, respectively. Fragments of 3 placentomes were obtained from each animal of all groups. The first of them was removed from the base, the second from the middle part and the third from the end of the gestational uterine horn. The fragments were fixed in Bouin solution and histologically processed according to the usual paraffin inclusion techniques. The slides were stained by hematoxilin-eosin and potassium ferrocyanide and examined under light microscopy The erythrophagocytosis (EP) process of the trophoblast was identified in all the examined histological sections, throughout the gestation and for each placentome. An accumulation of spots of blood was observed only in the maternal-fetal interface located in the arcade zone of the placentome. The main cells of the trophoblast of these areas presented an intense phagocytic activity and the observation of erythrocytes with hemossiderin pigments in their citoplasm was possible. The trophoblast epithelium of these areas was thicker and with a columnar aspect than the cubic aspect observed in other areas. The trophoblast binucleate cells do not seem to participate in EP. Our findings indicate that the phagocitosis process of the maternal erythrocites by the trophoblast also occurs in caprine species, indicating that this could be a mechanism of transplacentary transfer of iron in this species.  相似文献   

9.
Immunoreaction to ovine placental lactogen was found in binucleate and uninucleate cells of the fetal trophoblast.  相似文献   

10.
Prostaglandin H synthase (PGHS) activity within intrauterine tissues is considered to catalyze a critical step in prostaglandin (PG) biosynthesis at parturition. In sheep, the placenta is a major site of PG production throughout pregnancy, but little information is available concerning the cells that are responsible. Therefore we determined the distribution of immunoreactive (IR-) PGHS in ovine placental tissue obtained at different times of pregnancy using immunohistochemical techniques. In placentomes from early pregnancy (Days 30-54), IR-PGHS was present in maternal epithelial syncytium, but was not detectable in trophoblast cells. Between Day 54 and Day 100, the number of cells that stained positive for PGHS declined in the maternal epithelial layer in the body of the placenta, but IR-PGHS was present in maternal epithelial cells overlying the vascular cones of the placental hemophagous zone. It was also present in the chorionic fibroblasts, but remained undetectable from all classes of trophoblast cells. IR-PGHS was first detectable in the trophoblastic epithelium by Day 114. Between Day 119 and term the trophoblast mononuclear epithelial cells were intensely immunopositive for PGHS, although immunonegative binucleate cells were present. The maternal epithelium was immunonegative except during the last 7-10 days of pregnancy when PGHS immunostaining appeared in both basal and apical regions of the placenta. Thus, the cellular localization of IR-PGHS changes during ovine pregnancy, from predominantly maternal during the first half of gestation to undetectable and then to predominantly trophoblastic between Day 114 and term, suggesting a gestation-dependent change in sites of PG production during ovine pregnancy. Appearance of IR-PGHS in the trophoblast precedes activation of the fetal hypothalamic-pituitary-adrenal axis, generally considered to provide the trigger to the onset of parturition in sheep, and would therefore appear to be regulated through alternative pathways or mechanisms.  相似文献   

11.
We evaluated the changes in mRNA expression of cytosolic phospholipase A(2)(cPLA(2)) and 15-hydroxyprostaglandin dehydrogenase (PGDH) in intrauterine and gestational tissues during mid-late murine pregnancy. Tissues (decidual caps, fetal membranes, and placentae, uterus, and cervix) were collected from pregnant mice at days 12, 14, 16, 18, and 19 (am and pm) of gestation. Total RNA was isolated and evaluated for cPLA(2)and PGDH expression by northern blot analysis normalized to GAPDH expression. Expression of mRNA for cPLA(2)increased in the placentae and decidual caps on day 18 and 19 pm, respectively. There was also increased expression for PGDH mRNA in the placenta and fetal membranes at the later stages of pregnancy. The tissue specific differences in expression of cPLA(2)and PGDH suggest that changes in enzymatic regulation of PG production and degradation may be crucial for the initiation of labour.  相似文献   

12.
This study examined the placentation in the degu, the origin of the extrasubplacental trophoblast (EST) (extravillous trophoblast in human), and the activity of Na+/K+ ATPase in the placental barrier during different gestational ages, as part of a wider effort to understand the reproductive biology of this species. Fifteen degus at the first stage of gestation, midgestation and at term of pregnancy were studied. At day 27 of gestation, the subplacenta is formed under the wall of the central excavation. Simultaneously, the outermost trophoblast of the ectoplacental cone differentiated into secondary trophoblast giant cells that lie on the outside of the placenta, forming an interface with the maternal cells in the decidua. These giant cells immunostained positive for cytokeratin (CK) and placental lactogen (hPL) until term. During this period, the EST merged from the subplacenta to the decidua and immunostained negative for CK, but at term, immunostained for CK and hPL in the maternal vessels. The vascular mesenchyme of the central excavation invaded the chorioallantoic placenta during this period, forming two fetal lobules of labyrinthine-fine syncytium, the zone of the placental barrier. The activity of Na+/K+ ATPase in the placental barrier was constant during the gestational period. The residual syncytium at the periphery of the placental disc and between the lobules was not invaded by fetal mesenchyme and formed the marginal and interlobular labyrinthine syncytium that immunostained first for CK, and later for hPL, as in the labyrinthine fine syncytium. The presence of intracytoplasmic electron-dense material in the interlobular labyrinthine syncytium suggested a secretory process in these cells that are bathed in maternal blood. Placentas obtained from vaginal births presented a large, single lobe, absence of the subplacenta, and a reduced interlobular labyrinthine syncytium. At day 27, the inverted visceral yolk sac is observed and its columnar epithelium immunostained for CK and hPL. This suggests that the yolk sac is an early secretory organ. The epithelium of the parietal yolk sac covers the placenta. The origin of the EST in the degu placenta and its migration to maternal vessels allows us to present this animal model for the study of pregnancy pathologies related to alterations in the migration of the extravillous trophoblast.  相似文献   

13.
This study examined the placentation in the degu, the origin of the extrasubplacental trophoblast (EST) (extravillous trophoblast in human), and the activity of Na+/K+ ATPase in the placental barrier during different gestational ages, as part of a wider effort to understand the reproductive biology of this species. Fifteen degus at the first stage of gestation, midgestation and at term of pregnancy were studied. At day 27 of gestation, the subplacenta is formed under the wall of the central excavation. Simultaneously, the outermost trophoblast of the ectoplacental cone differentiated into secondary trophoblast giant cells that lie on the outside of the placenta, forming an interface with the maternal cells in the decidua. These giant cells immunostained positive for cytokeratin (CK) and placental lactogen (hPL) until term. During this period, the EST merged from the subplacenta to the decidua and immunostained negative for CK, but at term, immunostained for CK and hPL in the maternal vessels. The vascular mesenchyme of the central excavation invaded the chorioallantoic placenta during this period, forming two fetal lobules of labyrinthine-fine syncytium, the zone of the placental barrier. The activity of Na+/K+ ATPase in the placental barrier was constant during the gestational period. The residual syncytium at the periphery of the placental disc and between the lobules was not invaded by fetal mesenchyme and formed the marginal and interlobular labyrinthine syncytium that immunostained first for CK, and later for hPL, as in the labyrinthine fine syncytium. The presence of intracytoplasmic electron-dense material in the interlobular labyrinthine syncytium suggested a secretory process in these cells that are bathed in maternal blood. Placentas obtained from vaginal births presented a large, single lobe, absence of the subplacenta, and a reduced interlobular labyrinthine syncytium. At day 27, the inverted visceral yolk sac is observed and its columnar epithelium immunostained for CK and hPL. This suggests that the yolk sac is an early secretory organ. The epithelium of the parietal yolk sac covers the placenta. The origin of the EST in the degu placenta and its migration to maternal vessels allows us to present this animal model for the study of pregnancy pathologies related to alterations in the migration of the extravillous trophoblast.  相似文献   

14.
We have previously reported that the steroidogenic activity of the bovine placentome is stimulated by a calcium-mediated, cyclic nucleotide-independent mechanism and that this steroidogenesis is limited by the availability of sterol substrate to the side-chain cleavage enzyme. We have recently established that the antibody against bovine adrenal cytochrome P-450 cholesterol side-chain cleavage enzyme (P-450scc) can be used to specifically detect P-450scc in both bovine placentome and corpus luteum. In the present study, we used an immunogold technique to localize the P-450scc in the bovine placentome by electron microscopy. The mononucleate cell of the cotyledon showed both giant and normal-sized mitochondria, with the latter, predominating. Both mitochondrial types found in the mononucleate cells clearly displayed gold particles located on the cristae; in contrast, these particles were absent in the binucleate cells. It is worth noting that giant mitochondria were found exclusively in the placental mononucleate cells in both the fetal and maternal sites but not in the binucleate cells. These findings suggest that the cholesterol side-chain cleavage enzyme is present in bovine cotyledon cells, primarily in mononucleate cells. The variations in P-450scc immunoreactivity among different cells of the placenta are suggestive of different steroidogenetic capacities of the cells.  相似文献   

15.
In early pregnancy the equine placenta consists of a simple apposition of fetal and maternal epithelia, but it becomes more complex with the formation of microcotyledons between 75 and 100 days of gestation. Although the placental barrier maintains an epitheliochorial arrangement throughout the course of pregnancy, a thinning of the maternal epithelium and a progressive indentation of the chorionic epithelium by fetal capillaries shortens the length of the diffusion pathway and reduces the amount of placental tissue between fetal and maternal bloodstreams. These structural modifications may reflect the changing requirements of the fetus for O2 and other metabolites as gestation proceeds. During the first 200 days of pregnancy there is evidence of intense pinocytotic activity by the cells of the trophoblast. From the 100th day of pregnancy there is a pronounced development of smooth endoplasmic reticulum, while rough endoplasmic reticulum and irregular, dense, membrane-bound bodies are a prominent feature of the paranuclear cytoplasm from Day 200. These changes suggest that the cells of the trophoblast become more highly involved in synthetic processes with increasing gestational age.  相似文献   

16.
W J Krause  J H Cutts 《Acta anatomica》1985,123(3):156-171
For the first 9 days of gestation, opossum embryos float in uterine secretions, separated from maternal tissues by a shell membrane. Each embryo is part of the wall of its hollow embryonic sphere. By the 10th day of development, the embryo becomes enveloped by both the amnion and yolk-sac. The yolk-sac consists of vascular and non-vascular portions and, together with the surrounding trophectoderm (trophoblast), forms the yolk-sac placenta of the opossum: the allantois does not contribute to formation of the placenta. The vascular portion of the yolk-sac placenta establishes an intimate relationship with the uterine epithelium soon after loss of the shell membrane. The yolk-sac placenta is non-invasive. Cells of the trophoblast exhibit numerous microvilli, an apical endocytic complex and the lateral and basal cell membrane are elaborately folded. These features suggest a cell that is active in the transport of materials. Junctional complexes between cells of the trophoblast and uterine epithelium were not observed. The uterine epithelium changes from ciliated pseudostratified columnar with few infoldings of lateral and basal cell membranes, to non-ciliated simple columnar in which these membranes show elaborate infoldings. The cells show numerous inclusions and mitochondria are polarized to the basal half of the cell. These features suggest a cell that also is active in the transport of materials.  相似文献   

17.
The hypothesis was examined that the fetal membranes and the endometrium and myometrium of pregnant sheep have the ability to produce oestrogens and progesterone from exogenous precursors, and that this capacity might change during the course of pregnancy, and in relation to the onset of parturition. Cells were dispersed from samples of myometrium, endometrium, allantois, chorion and amnion from sheep at Day 50, Days 130-135 of pregnancy, and at term, in labour, and were incubated in the presence of pregnenolone and 20 alpha-dihydroprogesterone as potential precursors for progesterone production, and oestrone sulphate and androstenedione as potential precursors for oestrogen production. In addition, the metabolism of radioactive progesterone and oestrone sulphate by the dispersed cells was examined. Pregnenolone was converted to progesterone in significant amounts by dispersed cells from chorion and endometrium only. At Day 130 and at term this conversion was blocked by the addition of trilostane, an inhibitor of 3 beta-hydroxysteroid dehydrogenase activity. There was no significant change in the net production of progesterone from exogenous pregnenolone with gestation. 20 alpha-Dihydroprogesterone was converted to progesterone by all tissues, and at each stage of gestation. Formation of progesterone from 20 alpha-dihydroprogesterone was invariably greater than that from pregnenolone, but did not change with pregnancy. Oestrone sulphate was converted to oestrone and oestradiol by all tissues. In the myometrium and chorion this conversion was lower at term than at Day 50 of pregnancy. In contrast, there was very little conversion of androstenedione to unconjugated oestrogen, minimal activity being demonstrable only in dispersed cells from the chorion in some preparations. Radioactive progesterone was converted to radiochemically pure 17 alpha-hydroxyprogesterone by chorion, and to radiochemically pure 20 alpha-dihydroprogesterone by amnion, chorion, allantois and endometrium obtained at term pregnancy. At term [3H]oestrone sulphate was converted to radiochemically pure oestrone by all tissues. We conclude that there is a tissue-specific distribution of different steroid metabolizing enzyme activities in the fetal membranes and intrauterine tissues of pregnant sheep. Of the substrates examined, 20 alpha-dihydroprogesterone and oestrone sulphate were preferred for progesterone and oestrogen production, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Carbonic anhydrase (CA) facilitates acid-base transport in several tissues. Acidosis upregulates membrane-bound SDS-resistant hydratase activity in various tissues and CA IV mRNA in rabbit kidney. This study was designed to assess whether the expression of membrane-bound CA IV isozyme in mouse placenta is regulated developmentally and by maternal ammonium chloride loading at the end of pregnancy. For this purpose we used Northern blot analysis, Western blots of microsomal membranes, and immunocytochemistry. The expression of CA IV mRNA on Northern blots tripled from day 11 to day 15 and then remained stable until the end of pregnancy. Expression of CA IV immunoreactive protein on Western blot tripled from day 11 to day 15 and decreased almost to baseline by day 19. Strong staining for CA IV was detected by immunocytochemistry in labyrinthine trophoblast, in the endodermal layer of the yolk sac (both intra- and extraplacental) and in the uterine epithelium. Weak staining was observed in most fetal endothelial cells at 11 days but not later in gestation. Maternal acidosis did not upregulate the expression of CA IV mRNA or CA IV immunoreactive protein. Thus CA IV expression in mouse placenta is developmentally regulated. Maternal acidosis during the last quarter of pregnancy does not upregulate CA IV mRNA or CA IV immunoreactive protein.  相似文献   

19.
To investigate the possible role of nitric oxide (NO) produced locally or intramurally in the quiescence of the pregnant myometrium, nitric oxide synthase (NOS) activity was measured in samples from first trimester (villous, and non villous-trophoblast), term placenta and pregnant myometrium. Trophoblast tissue was obtained from psychosocial termination of pregnancy (9 – 12 weeks' gestation) whereas placenta and myometrium, from the same patient, at deliveries by Caesarean section. NOS activity was measured in both cytosolic and particulate fractions by the formation of 14C-citrulline from 14C-arginine. Western immunoblotting was used to identify the endothelial NOS (eNOS) and neuronal (nNOS) isoforms. The activity of NOS in particulate fractions from all preparations was considerably higher than the cytosolic fractions. Activity in all fractions except the myometrium was highly Ca-dependent. More than 50% of particulate NOS from the myometrium was Ca-independent. NOS activity was highest in the villous trophoblast and there was a significant difference between the villous and non-villous trophoblast. In placenta and myometrium, NOS was 2–4 fold and 20–28-fold lower than the villous trophoblast, respectively. Western blot analysis showed clearly eNOS in the particulate fraction and a weak eNOS band in the cytosolic fractions, whereas nNOS was not detectable in any of the fractions. In view of the marginal activity of NOS in the myometrium, NO produced by the trophoblast and placenta could play a significant role in maintaining uterine quiescence by paracrine effect.  相似文献   

20.
Binucleate cells are a normal component of the ovine chorionic epithelium, but are usually separated from the fetal-maternal interface by a thin layer of cytoplasm derived from the principal or uni-nucleate cells of the trophoblast. They are distinguished not only by two distinct and separate nuclei, but also by conspicuous membrane-bound cytoplasmic inclusions in the form of haloed droplets. After fetal pituitary stalk section binucleate cells move up to and participate in the formation of the fetal-maternal interface; furthermore they extend clear blunt-ended pseudopodia into the maternal epithelial syncytium. These activities do not appear to be supppressed by fetal infusion of cortisol or ACTH. The apparent motility of binucleate cells, together with the presence of haloed droplets within the maternal epithelial syncytium, suggests that after fetal pituitary stalk section binucleate cells invade the uterine syncytium, lose their limiting membranes and discharge their contents into the syncytial cytoplasm. Large molecules such as ovine placental lactogen may be transported from fetal to maternal tissues by this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号