首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We found that the tritium-labeled synthetic ACTH-like octapeptide leucocorticotropin corresponding to the 81–88 sequence of the precursor of human interleukin-1α ([3H]GK VLKKRR) is bound by the ACTH receptor of rat adrenal cortex with a high affinity and specificity (K d 2.2 ± 0.1 nM). This peptide was shown to exert no effect on the adenylate cyclase activity of the membranes of rat adrenal cortex in the concentration range from 1 to 1000 nM. Leucocorticotropin administration three times at doses of 10–20 μg/animal did not change the level of hydroxycorticosteroids (11-HOCS) in the rat adrenal glands in the absence of temperature action. At the same time, the peptide abolishes (at a dose of 20 μg/animal, three times) or significantly decreases (at a dose of 10 μg/animal, three times) the dramatic increase in the 11-HOCS content in the adrenal glands occurring in the case of cold or heat shock. Thus, leucocorticotropin normalizes the 11-HOCS level in the rat adrenal cortex during stress. The stress-protective effect of the peptide is mediated through the ACTH receptor.  相似文献   

2.
The activity of the KKRR synthetic peptide corresponding to the 15-18 sequence of human adrenocorticotropic hormone (ACTH) and its analogues: KKKK, RRRR, RRKK, kKRR, KkRR, KKrR, and KKRr (amino acid residues of the D configuration are designated by small letters), was studied in vivo on rats under cold and heat shock. Intranasal administration of the KKRR peptide at doses of 2–10 μg/animal 1 day before the shock was found to prevent a dramatic increase in the level of corticosterone in rat adrenal glands and blood plasma caused by the temperature effect. Amino acid substitutions in the KKRR peptide were shown to result in abrupt decrease in its activity. The peptide analogues exhibit a low stress-protective activity and had a low affinity for the ACTH receptor.  相似文献   

3.
Tritium-labeled synthetic fragments of human adrenocorticotropic hormone (ACTH) [3H]ACTH (11–24) and [3H]ACTH (15–18) with a specific activity of 22 and 26 Ci/mmol, respectively, were obtained. It was found that [3H]ACTH-(11–24) binds to membranes of the rat adrenal cortex with high affinity and high specificity (K d 1.8 ± 0.1 nM). Twenty nine fragments of ACTH (11–24) were synthesized, and their ability to inhibit the specific binding of [3H]ACTH (11–24) to adrenocortical membranes was investigated. The shortest active peptide was found to be an ACTH fragment (15–18) (KKRR) (K i 2.3 ± 0.2 nM), whose [3H] labeled derivative binds to rat adrenocortical membranes (K d 2.1 ± 0.1 nM) with a high affinity. The specific binding of [3H]ACTH-(15–18) was inhibited by 100% by unlabeled ACTH (11–24) (K i 2.0 ± 0.1 nM). ACTH (15–18) in the concentration range of 1–1000 nM did not affect the adenylate cyclase activity of adrenocortical membranes and, therefore, is an antagonist of the ACTH receptor.  相似文献   

4.
Synthetic peptide, corresponding to the amino acid sequence 11-24 of human adrenocorticotropic hormone (ACTH), was labeled with tritium (specific activity of 22 Ci/mmol). [(3)H]ACTH (11-24) was found to bind to rat adrenal cortex membranes with high affinity and specificity (K(d) = 1.8 +/- 0.1 nM). Twenty nine fragments of ACTH (11-24) have been synthesized and their ability to inhibit the specific binding of [(3)H]ACTH (11-24) to adrenocortical membranes has been investigated. Unlabeled fragment ACTH 15-18 (KKRR) was found to replace in a concentration-dependent manner [(3)H]ACTH (11-24) in the receptor-ligand complex (K(i) = 2.3 +/- 0.2 nM). ACTH (15-18) was labeled with tritium (specific activity of 20 Ci/mmol). [(3)H]ACTH (15-18) was found to bind to rat adrenal cortex membranes with high affinity (K(d) = 2.1 +/- 0.1 nM). The specific binding of [(3)H]ACTH (15-18) was inhibited by unlabeled ACTH (11-24) (K(i) = 2.2 +/- 0.1 nM). ACTH (15-18) at the concentration range of 1-1000 nM did not affect the adenylate cyclase activity in adrenocortical membranes.  相似文献   

5.
The antiproliferative and immunosuppressivein vitro effects ofimmunocortin, a synthetic adrenocorticotropin-like (ACTH-like) decapeptide H-Val-Lys-Lys-Pro-Gly-Ser-Ser-Val-Lys-Val-OH, whose sequence corresponds to segment 11–20 of the variable part of the human IgG1 heavy chain, were studied. At concentrations of 10−11−10−7 M, immunocortin was found to inhibit the growth of the human MT-4 T-lymphoblastoid cell line, to suppress the blast transformation of thymocytes, and to decrease the spontaneous mobility of peritoneal macrophages and their bactericidal action toward the virulent strainSalmonella typhimurium 415. By using a125I-labeled “addressing” fragment of ACTH {[125I]ACTH (13–24)}, we showed that MT-4 cells express specific receptors for ACTH (K d 97 pM). Immunocortin and human ACTH (but not the heavy chain of IgG1) competitively inhibited the binding of [125I]ACTH-(13–24) to these receptors withK i1 of 0.38 andK i2 of 0.34 nM, respectively. Specific receptors for ACTH (K d 5.8 nM) on mouse thymocytes were detected and characterized. The unlabeled immunocortin was shown to compete with labeled ACTH-(13–24) for binding to these receptors (K i=1.8 nM), and this binding of immunocortin to receptors on thymocytes activates adenylate cyclase from these cells and increases the intracellular concentration of cAMP.  相似文献   

6.
The synthetic peptide octarphin (TPLVTLFK) corresponding to the sequence 12–19 of β‐endorphin, a selective agonist of nonopioid β‐endorphin receptor, was labeled with tritium to a specific activity of 29 Ci/mmol. [3H]Octarphin was found to bind to high‐affinity naloxone‐insensitive binding sites on membranes isolated from rat adrenal cortex (Kd = 35.7 ± 2.3 nM, Bmax = 41.0 ± 3.6 pmol/mg protein). The binding specificity study revealed that these binding sites were insensitive not only to naloxone but to α‐endorphin, γ‐endorphin, [Met5]enkephalin, and [Leu5]enkephalin as well. At the same time, the [3H]octarphin‐specific binding with adrenal cortex membranes was inhibited by unlabeled β‐endorphin (Ki = 32.9 ± 3.8 nM). Octarphin at concentrations of 10?9–10?6 M was found to inhibit the adenylate cyclase activity in adrenocortical membranes, whereas intranasal injection of octarphin at doses of 5 and 20 µg/rat was found to reduce the secretion of corticosterone from the adrenals to the bloodstream. Thus, octarphin decreases the adrenal cortex functional activity through the high affinity binding to nonopioid receptor of β‐endorphin. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Dopamine receptors have been found in certain populations of non-neuronal cells in the brain, viz., discrete areas of ciliated ependyma and the ependymal cells of the choroid plexus. We have studied the presence of both tyrosine-hydroxylase-immunoreactive nerve fibers and dopamine receptors in the subcommissural organ (SCO), an ependymal brain gland that is located in the roof of the third ventricle and that secretes, into the cerebrospinal fluid, glycoproteins that aggregate to form Reissners fiber (RF). Antibodies against D2, D3, D4, and D5 dopamine receptors were used in immunoblots of bovine striatum, fresh SCO, and organ-cultured SCO, and in immunocytochemistry of the bovine, rat, and mouse SCO. Only a few tyrosine-hydroxylase fibers appeared to reach the SCO. However, virtually all the secretory ependymal and hypendymal cells of the SCO immunoreacted with antibodies against D2, D4, and D5 receptors, with the last-mentioned rendering the strongest reaction, especially at the ventricular cell pole of the secretory ependymocytes, suggesting that dopamine might reach the SCO via the cerebrospinal fluid. The antibodies against the four subtypes of receptors revealed corresponding bands in immunoblots of striatum and fresh SCO. Although the cultured SCO displayed dopamine receptors, dopamine had no apparent effect on the expression of the SCO-spondin gene/protein or on the release of RF-glycoproteins (SCO-spondin included) by SCO explants, suggesting that dopamine affects the function(s) of the SCO differently from the secretion of RF-glycoproteins.Financial support was provided by grants PI 030756 and Red CIEN, Instituto de Salud Carlos III, Spain (to J.M.P.F.), and 1030265 from Fondecyt, Chile (to E.M.R.)  相似文献   

8.
A comparison of three labeling strategies for studies involving side chain methyl groups in high molecular weight proteins, using 13CH3,13CH2D, and 13CHD2 methyl isotopomers, is presented. For each labeling scheme, 1H–13C pulse sequences that give optimal resolution and sensitivity are identified. Three highly deuterated samples of a 723 residue enzyme, malate synthase G, with 13CH3,13CH2D, and 13CHD2 labeling in Ile δ1 positions, are used to test the pulse sequences experimentally, and a rationalization of each sequence’s performance based on a product operator formalism that focuses on individual transitions is presented. The HMQC pulse sequence has previously been identified as a transverse relaxation optimized experiment for 13CH3-labeled methyl groups attached to macromolecules, and a zero-quantum correlation pulse scheme (13CH3 HZQC) has been developed to further improve resolution in the indirectly detected dimension. We present a modified version of the 13CH3 HZQC sequence that provides improved sensitivity by using the steady-state magnetization of both 13C and 1H spins. The HSQC and HMQC spectra of 13CH2D-labeled methyl groups in malate synthase G are very poorly resolved, but we present a new pulse sequence, 13CH2D TROSY, that exploits cross-correlation effects to record 1H–13C correlation maps with dramatically reduced linewidths in both dimensions. Well-resolved spectra of 13CHD2-labeled methyl groups can be recorded with HSQC or HMQC; a new 13CHD2 HZQC sequence is described that provides improved resolution with no loss in sensitivity in the applications considered here. When spectra recorded on samples prepared with the three isotopomers are compared, it is clear that the 13CH3 labeling strategy is the most beneficial from the perspective of sensitivity (gains ≥2.4 relative to either 13CH2D or 13CHD2 labeling), although excellent resolution can be obtained with any of the isotopomers using the pulse sequences presented here.  相似文献   

9.
The nature of the lithium/hydrogen bonding between (CH2)2X(X: C=CH2, O, S) and LiY/HY(Y=F, Cl, Br) have been theoretically investigated at MP2/6-311++G (d, p) level, using Bader’s “atoms in molecules (AIM)” theory and Weinhold’s “natural bond orbital (NBO)” methodology. The molecule formation density differences (MFDD) of the titled complexes are analyzed. Two kinds of geometries of the lithium/hydrogen bonded complexes are compared. As a whole, the nature of lithium bond and hydrogen bond are different. For the same electron donor and the same acceptor, lithium bond is stronger than hydrogen bond. For the same electron acceptor and different kind of donors, the interaction energies follows the n-type> π-type > pseudo-π-type order. For the same (CH2)2X, the interaction energy increases in the sequence of Y=F, Cl and Br for lithium bond systems while it decreases for hydrogen bond systems. Electron transfer plays an important role in the formation of lithium bond systems while it is less important in the hydrogen bond systems.  相似文献   

10.
The effects of the adrenergic blocking agents phenoxybenzamine, phentolamine, indoramin and propranol on adrenalin-stimulated glucose uptake, lipolysis and cyclic AMP formation have been studied in rat-isolated fat cells. The β-adrenergic blocking agent propranolol was found to inhibit adrenaline-stimulated lipolysis and cyclic AMP formation at concentrations which did not inhibit adrenalin-stimulated glucose uptake. Conversely, the α-adrenergic blocking agent phenoxybenzamine inhibited adrenalin-stimulated glucose uptake at concentrations which did not inhibit lipolysis and cyclic AMP formation. The α-adrenergic blocking agents phentolamine and indoramin did not show differential effects on adrenalin-stimulated lipolysis and glucose uptake. Phenoxybenzamine had no effect on glucose uptake stimulated by insulin, adrenocorticotropic hormone and dibutyryl cyclic AMP. It is suggested that a substantial proportion of adrenalin-stimulated glucose uptake in rat-isolated fat cells is mediated by a mechanism not involving cyclic AMP. The adrenalin receptor was apparently α in type although the lack of effects of phentolamine and indoramin were not typical of those described on other α-systems.  相似文献   

11.
Nitromethane (NM, CH3NO2) is a widely studied energetic material, and its decomposition mechanism attracts great interest. In this work, bimolecular reactions between NO2 and nine intermediates generated during the decomposition of NM were investigated by computational chemistry methods. The mechanisms of the reactions were analyzed. The results revealed that these reactions possess small barriers and can easily occur, so they may be responsible for NO2 loss during the decomposition of NM.  相似文献   

12.
To develop non-invasive techniques for monitoring steroid stress hormones in the feces of free-living animals, extensive knowledge of their metabolism and excretion is essential. Here, we conducted four studies to validate the use of an enzyme immunoassay for monitoring fecal cortisol metabolites in snowshoe hares (Lepus americanus). First, we injected 11 hares with radioactive cortisol and collected all voided urine and feces for 4 days. Radioactive metabolites were recovered predominantly in the urine (59%), with only 8% recovered in the feces. Peak radioactivity was detected an average of 3.5 and 5.7 h after injection in the urine and feces, respectively. Second, we investigated diurnal rhythms in fecal cortisol metabolites by measuring recovered radioactivity 2 days after the radioactive cortisol injection. The total amount of radioactivity recovered showed a strong diurnal rhythm, but the amount of radioactivity excreted per gram of feces did not, remaining constant. Third, we injected hares with dexamethasone to suppress fecal cortisol metabolites and 2 days later with adrenocorticotropic hormone to increase fecal cortisol metabolites. Dexamethasone decreased fecal cortisol metabolites concentrations by 61% and adrenocorticotropic hormone increased them by 1,000%, 8–12 h after injection. Fourth, we exposed hares to a simulated predator (dog). This increased the fecal cortisol metabolites concentrations by 175% compared with baseline concentrations 8–12 h after exposure. Thus, this enzyme immunoassay provides a robust foundation for non-invasive field studies of stress in hares.  相似文献   

13.
The theoretical study of the interaction between CH2 and fullerene (C60) suggests the existence of an addition reaction mechanism; this feature is studied by applying an analysis of electronic properties. Several different effects are evident in this interaction as a consequence of the particular electronic transfer which occurs during the procedure. The addition or insertion of the methylene group results in a process, where the inclusion of CH2 into a fullerene bond produces the formation of several geometric deformations. A simulation of these procedures was carried out, taking advantage of the dynamic semi-classical Born-Oppenheimer approximation. Dynamic aspects were analyzed at different speeds, for the interaction between the CH2 group and the two bonds: CC (6, 6) and CC (6, 5) respectively on the fullerene (C60) rings. All calculations which involved electrons employed DFT as well as exchange and functional correlation. The results indicate a tendency for the CH2 fragment to attack the CC (6, 5) bond.  相似文献   

14.
New methods are described for accurate measurement of multiple residual dipolar couplings in nucleic acid bases. The methods use TROSY-type pulse sequences for optimizing resolution and sensitivity, and rely on the E.COSY principle to measure the relatively small two-bond 2DCH couplings at high precision. Measurements are demonstrated for a 24-nt stem-loop RNA sequence, uniformly enriched in 13C, and aligned in Pf1. The recently described pseudo-3D method is used to provide homonuclear 1H-1H decoupling, which minimizes cross-correlation effects and optimizes resolution. Up to seven 1H-13C and 13C-13C couplings are measured for pyrimidines (U and C), including 1DC5H5, 1DC6H6, 2DC5H6, 2DC6H5, 1DC5C4, 1DC5C6, and 2DC4H5. For adenine, four base couplings (1DC2H2, 1DC8H8, 1DC4C5, and 1DC5C6) are readily measured whereas for guanine only three couplings are accessible at high relative accuracy (1DC8H8, 1DC4C5, and 1DC5C6). Only three dipolar couplings are linearly independent in planar structures such as nucleic acid bases, permitting cross validation of the data and evaluation of their accuracies. For the vast majority of dipolar couplings, the error is found to be less than ±3% of their possible range, indicating that the measurement accuracy is not limiting when using these couplings as restraints in structure calculations. Reported isotropic values of the one- and two-bond J couplings cluster very tightly for each type of nucleotide.  相似文献   

15.
The intriguing decompositions of nitro-containing explosives have been attracting interest. While theoretical investigations have long been concentrated mainly on unimolecular decompositions, bimolecular reactions have received little theoretical attention. In this paper, we investigate theoretically the bimolecular reactions between nitromethane (CH3NO2)—the simplest nitro-containing explosive—and its decomposition products, such as NO2, NO and CO, that are abundant during the decomposition process of CH3NO2. The structures and potential energy surface (PES) were explored at B3LYP/6-31G(d), B3P86/6-31G(d) and MP2/6-311?+?G(d,p) levels, and energies were refined using CCSD(T)/cc-pVTZ methods. Quantum chemistry calculations revealed that the title reactions possess small barriers that can be comparable to, or smaller than, that of the initial decomposition reactions of CH3NO2. Considering that their reactants are abundant in the decomposition process of CH3NO2, we consider bimolecular reactions also to be of great importance, and worthy of further investigation. Moreover, our calculations show that NO2 can be oxidized by CH3NO2 to NO3 radical, which confirms the conclusion reached formerly by Irikura and Johnson [(2006) J Phys Chem A 110:13974–13978] that NO3 radical can be formed during the decomposition of nitramine explosives.  相似文献   

16.
Chromosome identification is essential in oyster genomic research. Fluorescence in situ hybridization (FISH) offers new opportunities for the identification of oyster chromosomes. It has been used to locate satellite DNAs, telomeres or ribosomal DNA sequences. However, regarding chromosome identification, no study has been conducted with simple sequence repeats (SSRs). FISH was used to probe the physical organization of three particular SSRs, (GGAT)(4), (GT)(7) and (TA)(10) onto metaphase chromosomes of the Pacific oyster, Crassostrea gigas. Hybridization signals were observed in all the SSR probes, but the distribution and intensity of signals varied according to the oligonucleotide repeat. The intercalary, centromeric and telomeric bands were observed along the chromosomes, and for each particular repeat every chromosome pair presented a similar pattern, allowing karyotypic analysis with all the SSRs tested. Our study is the first in mollusks to show the application of SSR in situ hybridization for chromosome identification and karyotyping. This technique can be a useful tool for oyster comparative studies and to understand genome organization in different oyster taxa.  相似文献   

17.
We report the comprehensive DFT based comparison of geometrical and energetic parameters of the d(A)3·d(T)3 and d(G)3·d(C)3 nucleic acid mini-helixes performed at B97-D3 and M06-2× levels of theory. We studied the ability of mini-helixes to retain the conformation of B-DNA in the gas phase and under the influence of water bulk, uncompensated charges, and counter-ions. The def2-SV(P) and 6-31G(d,p) basis sets have been used for B97-D3 and M06-2× calculations, correspondently. To estimate basis set superposition error, the recently developed semi-empirical procedure that calls geometrical counterpoise type correction for inter- and intra—molecular basis set superposition error (gcp) has been used in the case of def2-SV(P) basis set. We found that both considered DFT functionals predict very similar results for geometrical ad energetic characteristics. We also found that in contrast to average classical molecular dynamics and data of simple geometrical models, both considered DFT functionals predict the existence of duplex specific geometries. A prediction of interaction energies of d(A)3d(T)3 and d(G)3d(C)3 duplexes accomplished in this study also verifies the applied models and confirms reliability of the new computational gcp technique.  相似文献   

18.
A density functional theory (DFT) study of cct-As, ccc, and cct-CO isomers of the ruthenium dihydride complex RuH2(CO)2(AsMe2Ph)2 is reported (see Scheme for the labeling isomer 34 structures of RuH2(CO)2(AsMe2Ph)2). Complex geometries and relative energies of different isomers have been calculated with both B3LYP and M06-2X functionals. The results show that the B3LYP calculated Boltzmann populations of cct-As, ccc, and cct-CO isomers are 65.5, 34.2, and 0.3%, respectively. These are in better agreement with the experimental data than those calculated at the M06-2X level. However, the calculations of 1H NMR chemical shifts were found to be better described with M06-2X than with B3LYP or with HF level of theories. In addition, a transition state between the two most stable isomers was determined through DFT/(B3LYP or M06-2X) calculations.
Graphical Abstract Scheme: Labeling structure of RuH2(CO)2(AsMe2Ph)2
  相似文献   

19.
We propose a (3, 2)D CT-HCCH-COSY experiment to rapidly collect the data and provide significant dispersion in the spectral region containing (13)C-(1)H cross peaks of CH(3) groups belonging to Ala, Ile, Leu, Met, Thr and Val residues. This enables one to carry out chemical shift based editing and grouping of all the (13)C-(1)H cross peaks of CH(3) groups belonging to Ala, Ile, Leu, Met, Thr and Val residues in fractionally (10%) (13)C-labelled proteins, which in turn aids in the sequence-specific resonance assignments in general and side-chain resonance assignments in particular, in any given protein. Further, we demonstrate the utility of this experiment for stereospecific assignments of the pro-R and pro-S methyl groups belonging to the Leu and Val residues in fractionally (10%) (13)C-labelled proteins. The proposed experiment opens up a wide range of applications in resonance assignment strategies and structure determination of proteins.  相似文献   

20.
A theoretical study of a sandwich compound with a metal monolayer sheet between two aromatic ligands is presented. A full geometry optimization of the [Au3Cl3Tr2]2+ (1) compound, which is a triangular gold(I) monolayer sheet capped by chlorines and bounded to two cycloheptatrienyl (Tr) ligands was carried out using perturbation theory at the MP2 computational level and DFT. Compound (1) is in agreement with the 18–electron rule, the bonding nature in the complex may be interpreted from the donation interaction coming from the Tr rings to the Au array, and from the back-donation from the latter to the former. NICS calculations show a strong aromatic character in the gold monolayer sheet and Tr ligands; calculations done with HOMA, also report the same aromatic behavior on the cycloheptatrienyl fragments giving us an insight on the stability of (1). The Au –Au bond lengths indicate that an intramolecular aurophilic interaction among the Au(I) cations plays an important role in the bonding of the central metal sheet. Figure (a) Ground state geometry of complex 1; (b) Top view of compound 1 and Wiberg bond orders computed with the MP2/B1 computational method; (c) Lateral view of compound 1 and NICS values calculated with the MP2/B1 method; the values in parenthesis were obtained at the VWN/TZP level  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号