共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
alpha-synuclein gene mutations are major underlying genetic defects known in familial juvenile onset Parkinson's disease (PD), and alpha-synuclein is a major constituent of Lewy Bodies, the pathological hallmark of PD. The normal cellular function of alpha-synuclein has been elusive, and its exact etiological mechanism in causing dopaminergic neuronal death in PD is also not clearly understood. Very recent reports now indicate that mutant or simply over-expressed alpha- synuclein could cause damage by interfering with particular steps of neuronal membrane traffic. alpha-synuclein selectively blocks endoplamic reticulum-to-Golgi transport, thus causing ER stress. A screen in a yeast revealed that alpha- synuclein toxicity could be suppressed by over-expression of the small GTPase Ypt1/Rab1, and that over-expression of the latter rescues neuron loss in invertebrate and mammalian models of alpha-synuclein-induced neurodegeneration. alpha-synuclein may also serve a chaperone function for the proper folding of synaptic SNAREs that are important for neurotransmitter release. We discuss these recent results and the emerging pathophysiological interaction of alpha-synuclein with components of neuronal membrane traffic. 相似文献
3.
Papachroni KK Ninkina N Papapanagiotou A Hadjigeorgiou GM Xiromerisiou G Papadimitriou A Kalofoutis A Buchman VL 《Journal of neurochemistry》2007,101(3):749-756
Neurodegeneration in Parkinson's disease (PD) is accompanied by a local immune reaction in the affected brain regions. It is well established that alpha-synuclein is directly implicated in the pathogenesis of PD. Development of the disease is often associated with changes of expression and cellular compartmentalisation of this protein; moreover, its oligomers or protofibrils are often released to the CSF and plasma of patients. Aggregated alpha-synuclein can trigger the activation of microglia; however, its capacity to induce production of specific autoantibodies (AAb) has not been assessed. In this study, we examined the presence of AAb against synuclein family members in the peripheral blood serum of PD patients and control individuals. Presence of AAb against beta-synuclein or gamma-synuclein showed no association with PD. Multi-epitopic AAb against alpha-synuclein were detected in 65% of all patients tested and their presence strongly correlated with an inherited mode of the disease but not with other disease-related factors. The frequency of the presence of AAb in the studied group of patients with sporadic form of PD was not significantly different from the frequency in the control group but very high proportion (90%) of patients with familial form of the disease were positive for AAb against alpha-synuclein. We hypothesise that these AAb could be involved in pathogenesis of the inherited form of PD. 相似文献
4.
5.
The aggregation of normally soluble alpha-synuclein in the dopaminergic neurons of the substantia nigra is a crucial step in the pathogenesis of Parkinson's disease. Oxidative stress is believed to be a contributing factor in this disorder. Because it lacks Trp and Cys residues, mild oxidation of alpha-synuclein in vitro with hydrogen peroxide selectively converts all four methionine residues to the corresponding sulfoxides. Both oxidized and non-oxidized alpha-synucleins have similar unfolded conformations; however, the fibrillation of alpha-synuclein at physiological pH is completely inhibited by methionine oxidation. The inhibition results from stabilization of soluble oligomers of Met-oxidized alpha-synuclein. Furthermore, the Met-oxidized protein also inhibits fibrillation of unmodified alpha-synuclein. The degree of inhibition of fibrillation by Met-oxidized alpha-synuclein is proportional to the number of oxidized methionines. However, the presence of metals can completely overcome the inhibition of fibrillation of the Met-oxidized alpha-synuclein. Since oligomers of aggregated alpha-synuclein may be cytotoxic, these findings indicate that both oxidative stress and environmental metal pollution could play an important role in the aggregation of alpha-synuclein, and hence possibly Parkinson's disease. In addition, if the level of Met-oxidized alpha-synuclein was under the control of methionine sulfoxide reductase (Msr), then this could also be factor in the disease. 相似文献
6.
Parkinson's disease (PD) is an age-related neurodegenerative disease with unknown etiology. Growing evidence from genetic, pathologic, animal modeling, and biochemical studies strongly support the theory that abnormal aggregation of alpha-synuclein plays a critical role in the pathogenesis of PD. Protein aggregation is an alternative folding process that competes with the native folding pathway. Whether or not a protein is subject to the aggregation process is determined by the concentration of the protein as well as thermodynamic properties inherent to each polypeptide. An increase in cellular concentration of alpha-synuclein has been associated with the disease in both familial and sporadic forms of PD. Thus, maintenance of the intraneuronal steady state levels of alpha-synuclein below the critical concentration is a key challenge neuronal cells are facing. Expression of the alpha-synuclein gene is under the control of environmental factors and aging, the two best-established risk factors for PD. Studies also suggest that the degradation of this protein is mediated by proteasomal and autophagic pathways, which are two mechanisms that are related to the pathogenesis of PD. Recently, vesicle-mediated exocytosis has been suggested as a novel mechanism for disposal of neuronal alpha-synuclein. Relocalization of the protein to specific compartments may be another method for increasing its local concentration. Regulation of the neuronal steady state levels of alpha-synuclein has significant implications in the development of PD, and understanding the mechanism may disclose potential therapeutic targets for PD and other related diseases. 相似文献
7.
Engelender S 《Autophagy》2008,4(3):372-374
alpha-Synuclein is mutated in Parkinson's disease (PD) and is found in cytosolic inclusions, called Lewy bodies, in sporadic forms of the disease. A fraction of alpha-synuclein purified from Lewy bodies is monoubiquitinated, but the role of this monoubiquitination has been obscure. We now review recent data indicating a role of alpha-synuclein monoubiquitination in Lewy body formation and implicating the autophagic pathway in regulating these processes. The E3 ubiquitin-ligase SIAH is present in Lewy bodies and monoubiquitinates alpha-synuclein at the same lysines that are monoubiquitinated in Lewy bodies. Monoubiquitination by SIAH promotes the aggregation of alpha-synuclein into amorphous aggregates and increases the formation of inclusions within dopaminergic cells. Such effect is observed even at low monoubiquitination levels, suggesting that monoubiquitinated alpha-synuclein may work as a seed for aggregation. Accumulation of monoubiquitinated alpha-synuclein and formation of cytosolic inclusions is promoted by autophagy inhibition and to a lesser extent by proteasomal and lysosomal inhibition. Monoubiquitinated alpha-synuclein inclusions are toxic to cells and recruit PD-related proteins, such as synphilin-1 and UCH-L1. Altogether, the new data indicate that monoubiquitination might play an important role in Lewy body formation. Decreasing alpha- synuclein monoubiquitination, by preventing SIAH function or by stimulating autophagy, constitutes a new therapeutic strategy for Parkinson's disease. 相似文献
8.
Both familial Parkinson's disease mutations accelerate alpha-synuclein aggregation 总被引:16,自引:0,他引:16
Narhi L Wood SJ Steavenson S Jiang Y Wu GM Anafi D Kaufman SA Martin F Sitney K Denis P Louis JC Wypych J Biere AL Citron M 《The Journal of biological chemistry》1999,274(14):9843-9846
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major component of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD, but their pathogenic mechanism is not understood. Here we show that both wild type and mutant alpha-synuclein form insoluble fibrillar aggregates with antiparallel beta-sheet structure upon incubation at physiological temperature in vitro. Importantly, aggregate formation is accelerated by both PD-linked mutations. Under the experimental conditions, the lag time for the formation of precipitable aggregates is about 280 h for the wild type protein, 180 h for the A30P mutant, and only 100 h for the A53T mutant protein. These data suggest that the formation of alpha-synuclein aggregates could be a critical step in PD pathogenesis, which is accelerated by the PD-linked mutations. 相似文献
9.
The discovery of two missense mutations in alpha-synuclein gene and the identification of the alpha-synuclein as the major component of Lewy bodies and Lewy neurites have imparted a new direction in understanding Parkinson's disease. Now that alpha-synuclein has been implicated in several neurodegenerative disorders makes it increasingly clear that aggregation of alpha-synuclein is a hallmark feature in neurodegeneration. Although little has been learned about its normal function, alpha-synuclein appears to be associated with membrane phospholipids and may therefore participate in a number of cell signaling pathways. Here, we review the localization, structure, and function of alpha-synuclein and provide a new hypothesis on, (a) the disruption in the membrane binding ability of synuclein which may be the major culprit leading to the alpha-synuclein aggregation and (b) the complexity associated with nuclear localization of alpha-synuclein and its possible binding property to DNA. Further, we postulated the three possible mechanisms of synuclein induced neuronal degeneration in Parkinson's disease. 相似文献
10.
Alpha-synuclein (SNCA) is a key factor in the regulation of dopaminergic transmission and is related to Parkinson's disease. In this study, we investigated the effects of risk and protective SNCA haplotypes associated with Parkinson's disease on cognitive sequence learning in 204 healthy volunteers. We found that the 3'-block risk SNCA haplotypes are associated with less effective stimulus-reward learning of sequences and with superior context representation of sequences. In contrast, participants with protective haplotypes exhibit better stimulus-reward learning and worse context representation, which suggest that these functions are inversely affected by risk and protective haplotypes. The Rep1 promoter polymorphism does not influence cognitive sequence learning. Because stimulus-reward learning may be mediated by the basal ganglia and context learning may be related to the medial temporal lobe, our data raise the possibility that dopaminergic signals regulated by SNCA inversely affect these memory systems. 相似文献
11.
Parkinson's disease is a neurodegenerative disorder characterized by the progressive degeneration of the dopaminergic nigrostriatal pathway, and the presence of Lewy bodies. Over the past few years, several genes involved in inherited forms of the disease have been uncovered. In a small number of families with autosomal dominant inheritance, mutations have been identified in the genes encoding a-synuclein and ubiquitin carboxy-terminal hydrolase L1. Mutations in the parkin gene are a common cause of autosomal recessive parkinsonism with early onset, and also account for more than 15% of isolated cases with onset before age 45. The function of Parkin, a ubiquitin ligase involved in the degradation of protein substrates by the ubiquitin-proteasome pathway, highlights that ubiquitin-mediated proteolysis may play an important role in the pathophysiology of idiopathic Parkinson's disease. 相似文献
12.
13.
Previous reports on Parkinson's disease indicate that genetic mutations in alpha-synuclein result in the aberrant accumulation of this protein, causing toxic gain of function leading to the development of Parkinson's. A recent report on the Iowan kindred, an extended pedigree with an autosomal dominant form of this disease, provides new mechanistic insight into Parkinson's disease by showing that an elevation in wild-type alpha-synuclein protein is sufficient to develop the early-onset form of the disorder. This review discusses how insights gained from these studies of alpha-synuclein may direct future research into Parkinson's disease. 相似文献
14.
Background
Alpha-synuclein (SNCA) gene expression is an important factor in the pathogenesis of Parkinson''s disease (PD). Gene multiplication can cause inherited PD, and promoter polymorphisms that increase SNCA expression are associated with sporadic PD. CpG methylation in the promoter region may also influence SNCA expression.Methodology/Principal Findings
By using cultured cells, we identified a region of the SNCA CpG island in which the methylation status altered along with increased SNCA expression. Postmortem brain analysis revealed regional non-specific methylation differences in this CpG region in the anterior cingulate and putamen among controls and PD; however, in the substantia nigra of PD, methylation was significantly decreased.Conclusions/Significance
This CpG region may function as an intronic regulatory element for SNCA gene. Our findings suggest that a novel epigenetic regulatory mechanism controlling SNCA expression influences PD pathogenesis. 相似文献15.
Masliah E Rockenstein E Adame A Alford M Crews L Hashimoto M Seubert P Lee M Goldstein J Chilcote T Games D Schenk D 《Neuron》2005,46(6):857-868
Abnormal folding of alpha-synuclein (alpha-syn) is thought to lead to neurodegeneration and the characteristic symptoms of Lewy body disease (LBD). Since previous studies suggest that immunization might be a potential therapy for Alzheimer's disease, we hypothesized that immunization with human (h)alpha-syn might have therapeutic effects in LBD. For this purpose, halpha-syn transgenic (tg) mice were vaccinated with halpha-syn. In mice that produced high relative affinity antibodies, there was decreased accumulation of aggregated halpha-syn in neuronal cell bodies and synapses that was associated with reduced neurodegeneration. Furthermore, antibodies produced by immunized mice recognized abnormal halpha-syn associated with the neuronal membrane and promoted the degradation of halpha-syn aggregates, probably via lysosomal pathways. Similar effects were observed with an exogenously applied FITC-tagged halpha-syn antibody. These results suggest that vaccination is effective in reducing neuronal accumulation of halpha-syn aggregates and that further development of this approach might have a potential role in the treatment of LBD. 相似文献
16.
Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein. 总被引:13,自引:0,他引:13
Nelson B Cole Diane D Murphy Theresa Grider Susan Rueter Dawn Brasaemle Robert L Nussbaum 《The Journal of biological chemistry》2002,277(8):6344-6352
alpha-Synuclein is a major component of the fibrillary lesion known as Lewy bodies and Lewy neurites that are the pathologic hallmarks of Parkinson's disease (PD). In addition, point mutations in the alpha-synuclein gene imply alpha-synuclein dysfunction in the pathology of inherited forms of PD. alpha-Synuclein is a member of a family of proteins found primarily in the brain and is concentrated within presynaptic terminals. Here, we address the localization and membrane binding characteristics of wild type and PD mutants of alpha-synuclein in cultured cells. In cells treated with high concentrations of fatty acids, wild type alpha-synuclein accumulated on phospholipid monolayers surrounding triglyceride-rich lipid droplets and was able to protect stored triglycerides from hydrolysis. PD mutant synucleins showed variable distributions on lipid droplets and were less effective in regulating triglyceride turnover. Chemical cross-linking demonstrated that synuclein formed small oligomers within cells, primarily dimers and trimers, that preferentially associated with lipid droplets and cell membranes. Our results suggest that the initial phases of synuclein aggregation may occur on the surfaces of membranes and that pathological conditions that induce cross-linking of synuclein may enhance the propensity for subsequent synuclein aggregation. 相似文献
17.
The pigmentation of substantia nigra pars compacta dopaminergic neurons is due to the presence of neuromelanin, an irregular macromolecular pigment belonging to the family of melanins. Depletion of neuromelanin in Parkinson's disease is typically indicated by loss of brown color in this area. Unlike that from controls, the pigment extracted from substantia nigra of parkinsonian patients seems to be mainly composed by highly cross-linked, protease-resistant proteic material and the neuromelanin macromolecule appears to be a minor presence. In the present paper we describe the isolation by SDS-PAGE of this proteic component after cleavage of the melanin backbone under solubilizing conditions. A single band is observed, which has been identified as alpha-synuclein by western blotting. As expected, the same process performed on a control specimen did not show occurrence of any major proteic component. Nevertheless, extraction from a 91 years old control with Lewy bodies displayed minor alpha-synuclein immunoreactive aggregates, whereas inclusion of free alpha-synuclein was not observed at all. Results reported here support the view that alpha-synuclein accumulates within substantia nigra neurons and is entrapped in pigment granules during neuromelanin biosynthesis, i.e. before the melanin depletion characteristic of Parkinson's disease starts. 相似文献
18.
S J Wood J Wypych S Steavenson J C Louis M Citron A L Biere 《The Journal of biological chemistry》1999,274(28):19509-19512
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major components of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD. alpha-Synuclein fibrils similar to the Lewy body filaments can be formed in vitro, and we have shown recently that both PD-linked mutations accelerate their formation. This study addresses the mechanism of alpha-synuclein aggregation: we show that (i) it is a nucleation-dependent process that can be seeded by aggregated alpha-synuclein functioning as nuclei, (ii) this fibril growth follows first-order kinetics with respect to alpha-synuclein concentration, and (iii) mutant alpha-synuclein can seed the aggregation of wild type alpha-synuclein, which leads us to predict that the Lewy bodies of familial PD patients with alpha-synuclein mutations will contain both, the mutant and the wild type protein. Finally (iv), we show that wild type and mutant forms of alpha-synuclein do not differ in their critical concentrations. These results suggest that differences in aggregation kinetics of alpha-synucleins cannot be explained by differences in solubility but are due to different nucleation rates. Consequently, alpha-synuclein nucleation may be the rate-limiting step for the formation of Lewy body alpha-synuclein fibrils in Parkinson's disease. 相似文献
19.
Oxidative dimer formation is the critical rate-limiting step for Parkinson's disease alpha-synuclein fibrillogenesis 总被引:9,自引:0,他引:9
Krishnan S Chi EY Wood SJ Kendrick BS Li C Garzon-Rodriguez W Wypych J Randolph TW Narhi LO Biere AL Citron M Carpenter JF 《Biochemistry》2003,42(3):829-837
Intraneuronal deposition of alpha-synuclein as fibrils and oxidative stress are both implicated in the pathogenesis of Parkinson's disease. We found that the critical rate-limiting step in nucleation of alpha-synuclein fibrils under physiological conditions is the oxidative formation and accumulation of a dimeric, dityrosine cross-linked prenucleus. Dimer formation is accelerated for the pathogenic A30P and A53T mutant alpha-synucleins, because of their greater propensity to self-interact, which is reflected in the smaller values of the osmotic second virial coefficient compared to that of wild-type synuclein. Our finding that oxidation is an essential step in alpha-synuclein aggregation supports a mechanism of Parkinson's disease pathogenesis in which the separately studied pathogenic factors of oxidative stress and alpha-synuclein aggregation converge at the critical step of alpha-synuclein dimer formation. 相似文献