首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure was devised to determine whether in the stimulated chromaffin cell phosphate is incorporated into specific proteins ("chromobindins") that bind to chromaffin granule membranes in a Ca2+-dependent manner. Cells were preincubated with 32P-labeled orthophosphate, then challenged with secretory stimuli. A postmicrosomal supernatant fraction was prepared from the cells and incubated with unlabeled chromaffin granule membranes in the presence of 5 mM Ca2+. Proteins that bound to the membranes were isolated by centrifugation and examined for 32P content by electrophoresis and autoradiography. Stimulation by carbamylcholine, nicotine, 56 mM K+, or 2 mM Ba2+ led to the incorporation of 32P into a 37-kDa protein that had previously been characterized as a substrate for protein kinase C in vitro (chromobindin 9, or CB9; Summers, T. A., and Creutz, C. E. (1985) J. Biol. Chem. 260, 2437-2443). Incorporation of 32P into this protein was dependent on extracellular Ca2+ and followed a time course that paralleled secretion of catecholamines, returning to base-line levels after 30 min, when secretion terminated. 32P was also incorporated into a 58-kDa protein that may be tyrosine hydroxylase and into an unidentified 28-kDa protein in response to cell stimulation, but neither of these proteins bound to granule membranes in a Ca2+-dependent manner. Treatment of cells with phorbol 12,13-dibutyrate, an activator of protein kinase C, led to 32P incorporation into the 37-kDa protein that was only 30% of the level obtained with nicotinic stimulation, suggesting that additional kinases may be involved in phosphorylating this protein in the stimulated cell.  相似文献   

2.
Calcium-activated, phospholipid-dependent protein phosphorylation has not been studied in placenta. Human placental cytosol was subjected to an endogenous protein phosphorylation assay using [gamma-32P]ATP in the presence of calcium and phosphatidylserine. Protein phosphorylation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. When compared to basal levels, calcium (10(-6) M) in combination with phosphatidylserine (50 micrograms/ml) significantly enhanced (P less than 0.01) 32P incorporation into phosphoproteins having mol wt 47,000, 43,000, and 37,000. Half-maximal 32P incorporation was observed with 3.5 X 10(-7) M Ca2+ in the presence of phosphatidylserine (50 micrograms/ml). The effect of phosphatidylserine was biphasic. In the presence of Ca 10(-6) M, 32P incorporation increased to a maximum at 70 micrograms/ml of phosphatidylserine. The increase was suppressed at 150 micrograms/ml. Tetracaine caused a dose-dependent inhibition of calcium-activated, phospholipid-dependent enhancement of the three phosphorproteins. Calcium in the absence of phospholipid enhanced the phosphorylation of a protein of 98,000 mol wt. Phosphatidylserine suppressed this enhancement. Calmodulin (10(-6) M) had no detectable effect upon phosphorylation beyond that of calcium alone, but the calmodulin inhibitor R-24571 specificlly inhibited the calcium-stimulated 98,000 mol wt phosphoprotein. Calcium-activated, phospholipid-dependent phosphoproteins are present in human placental cytosol; whether calcium-activated, calmodulin-dependent phosphoproteins also are present remains a question.  相似文献   

3.
Protein kinase C (PKC) from bovine neutrophils was purified 1420-fold. Subcellular fractionation analysis of bovine neutrophil homogenate in the presence of EGTA indicated that more than 95% of the PKC activity was present in the soluble fraction. The purification procedure from cytosol involved sequential chromatographic steps on DE-52 cellulose, Mono Q, and phenyl-Sepharose. Whereas bovine brain PKC could be resolved into four isoenzymatic forms by chromatography on a hydroxylapatite column, bovine neutrophil PKC was eluted in a single peak, suggesting that it corresponded to a single isoform. The apparent molecular weight of bovine neutrophil PKC was 82,000, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By filtration on Sephadex G-150, a molecular weight of 85,000 was calculated, indicating that bovine neutrophil PKC in solution is monomeric. Its isoelectric point was 5.9 +/- 0.1. Bovine neutrophil PKC was autophosphorylated in the presence of [gamma-32P]ATP, provided that the medium was supplemented with Mg2+, Ca2+, phosphatidylserine, and diacylglycerol; phorbol myristate acetate could substitute for diacylglycerol. Autophosphorylated PKC could be cleaved by trypsin to generate two radiolabeled peptides of Mr 48,000 and 39,000. The labeled amino acids were serine and threonine. During the course of the purification procedure of bovine neutrophil PKC, a protein of Mr 23,000, which was abundant in the cytosolic fraction of the homogenate, was found to exhibit a strong propensity to PKC-dependent phosphorylation in the presence of [gamma-32P]ATP, Mg2+, Ca2+, phosphatidylserine, and diacylglycerol. This protein was recovered together with PKC in one of the two active peaks eluted from the Mono Q column at the second step of PKC purification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A protamine kinase has been purified to apparent homogeneity from extracts of the cytosol of bovine kidney cortex. This protamine kinase exhibited an apparent Mr = 43,000 as estimated by gel permeation chromatography on Sephacryl S-200 and an apparent Mr = 45,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified protamine kinase exhibited about 5% activity with casein, 8% with histone H2B, and less than 0.1% with histone H1, histone H4, glycogen synthase a from rabbit skeletal muscle, ovalbumin, bovine serum albumin, and phosvitin. The activity of the highly purified protamine kinase was unaffected by cyclic AMP (up to 0.1 mM), cyclic GMP (up to 0.1 mM), the heat-stable protein inhibitor of cyclic AMP-dependent protein kinase (up to 100 micrograms/ml), heparin (up to 100 micrograms/ml), EGTA (up to 1 mM), Ca2+ (up to 1 mM), calmodulin (up to 0.5 microM) in the absence or presence of Ca2+ (0.05 mM), and phosphatidylserine (up to 40 micrograms/ml) and/or diolein (up to 1 microgram/ml) in the absence or presence of Ca2+ (up to 0.5 mM). Experiments in which extracts of kidney cytosol were incubated with [gamma-32P]ATP and MgCl2 revealed that the phosphorylation of numerous polypeptides was markedly increased in the presence of the purified protamine kinase. The results indicate that this protamine kinase of kidney cytosol is a novel protein kinase.  相似文献   

5.
Purified zymogen granules were prepared from rat pancreas by using an iso-osmotic Percoll gradient. In the presence of [gamma-32P]ATP, phosphorylation of several granule proteins was induced by Ca2+, most notably a Mr-13 000 protein, whereas addition of cyclic AMP was without effect. When phosphatidylserine was also added, Ca2+ increased the phosphorylation of additional proteins, with the largest effect on a protein of Mr 62 000. Purified granules were also able to phosphorylate exogenous substrates. Ca2+-induced phosphorylation of lysine-rich histone was enhanced over 3-fold in the presence of phosphatidylserine, and cyclic AMP-activated protein kinase activity was revealed with mixed histone as substrate. The concentrations of free Ca2+ and cyclic AMP required for half-maximal phosphorylation of both endogenous and exogenous proteins were 1-3 microM and 57 nM respectively. Treatment of granules with 0.25 M-KCl resulted in the release of phosphatidylserine-dependent kinase activity into a high-speed granule supernatant. In contrast, granule-protein substrates of Ca2+-activated kinase activity were resistant to KCl extraction, and in fact were present in purified granule membranes. Kinase activity activated by cyclic AMP was not extracted by KCl treatment. It is concluded that phosphorylation of integral membrane proteins in the zymogen granule can be induced by one or more Ca2+-activated protein kinases. Such a reaction is a potential mechanism by which exocytosis may be regulated in the exocrine pancreas by Ca2+-mediated secretagogues.  相似文献   

6.
At least 23 soluble proteins (chromobindins) bind to chromaffin granule membranes in the presence of Ca2+. In order to further the identification of the chromobindins and to determine the roles they may play in exocytosis or other aspects of chromaffin cell biology, several of these proteins were compared to other known membrane-binding proteins. Chromobindin 4 was identified as a 32-kDa protein called calelectrin or endonexin. Immunologically related proteins were detected in bovine brain and human platelets. Chromobindin 20 was identified as a 67-kDa variant of calelectrin and was found to have the activities of the synexin inhibitory protein, synhibin. Chromobindin 8 was identified as p36, a substrate for the tyrosine-specific kinase, pp60v-src. Chromobindin 8 was also demonstrated to undergo phosphorylation predominantly on alkali-sensitive sites during stimulation of the chromaffin cell with 20 microM nicotine. Chromobindin 6 was identified as p35, a substrate for the tyrosine kinase activity associated with the epidermal growth factor receptor. Chromobindin 9, which is known to be a substrate for protein kinase C (Ca2+/phospholipid-dependent enzyme), was found to be immunologically related to p35 and may be a precursor of chromobindin 6. The identification of these proteins from the chromaffin system may be useful in the characterization of similar, complex groups of membrane-binding proteins that have been observed in other systems.  相似文献   

7.
In 32Pi-loaded bovine neutrophils stimulated with phorbol myristate acetate (PMA), radioactivity was preferentially incorporated into a protein of low molecular mass, suggesting a PKC-dependent phosphorylation. This protein, termed 23-kDa protein, was predominantly localized in the cytosol. It was purified from bovine neutrophil cytosol by a series of chromatographic steps, including ion exchange on DE-52 cellulose and Mono Q, and filtration on Bio-Gel P60 in the presence of mercaptoethanol and urea. The apparent molecular mass of the purified protein, assessed by SDS-PAGE and mercaptoethanol by reference to protein markers, ranged between 20 and 23 kDa, depending on the percentage of polyacrylamide and conditions of migration. In the absence of mercaptoethanol, a dimer accumulated. Homogeneity of the 23-kDa protein was verified by 2D-PAGE analysis. Some properties of the 23-kDa protein, including its amino acid composition, were determined. Gel isoelectric focusing (IEF) of the purified 23-kDa protein followed by Coomassie blue staining allowed the visualization of four discrete protein bands with isoelectric points ranging between pH 6.3 and 6.7. Phosphorylation of the 23-kDa protein by [gamma-32P]ATP in the presence of bovine neutrophil PKC supplemented with Ca2+, phosphatidylserine, and diacylglycerol or with PMA occurred on serine and required the presence of mercaptoethanol. The apparent KM of ATP was 9 microM. The 23-kDa protein was also phosphorylated by PKM, the catalytic fragment of PKC obtained after removal of the regulatory domain, but not by cAMP-dependent protein kinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The participation of calcium-activated, phospholipid-dependent protein kinase in the phosphorylation of endogenous islet proteins following the exposure of cultured, neonatal pancreatic islets to stimulatory glucose concentrations was investigated by two techniques. In the first technique, islets were prelabeled with 32Pi. The major endogenous substrates for glucose-induced phosphorylation had apparent molecular masses of 130,100 +/- 1010, 100,000 +/- 700, 80,400 +/- 890, 58,100 +/- 1200, 39,800 +/- 700, and 29,400 +/- 700 Da. In the presence of 12-O-tetradecanoylphorbol 13-acetate (2 microM), an activator of calcium-activated phospholipid-dependent kinase, there was enhanced phosphorylation of proteins of 80,000, 40,000, and 29,000 Da. In the second technique, exogenous phosphorylation by [gamma-32P]ATP of proteins in a postnuclear particulate fraction was studied in the presence and absence of cofactors for Ca2+-activated, phospholipid-dependent protein kinase (Ca2+, phosphatidylserine, and unsaturated diolein). These studies were performed in islets preexposed to low (1.7 mM) or high (16.7 mM) glucose concentration prior to preparation of the postnuclear particulate fraction. Following exposure of islets to low glucose concentration, three substrates (apparent molecular masses 40,500 +/- 600, 57,100 +/- 700, and 79,400 +/- 600 Da) in the postnuclear particulate fraction exhibited enhanced phosphorylation in the presence of calcium ions, phosphatidylserine, and unsaturated diolein. In preparations of islets preexposed to 16.7 mM glucose, the phosphorylation of the protein of molecular mass about 40,000 Da was significantly reduced, indicating prior phosphorylation of the acceptor sites on this substrate in response to glucose exposure. It is concluded that stimulation of neonatal cultured islets by glucose induces the acute changes in calcium ion, phospholipid, and diacylglycerol concentration required to activate the calcium-activated phospholipid-dependent protein kinase and that the islet postnuclear particulate fraction contains at least one specific substrate for this kinase.  相似文献   

9.
M A Shia  P F Pilch 《Biochemistry》1983,22(4):717-721
In the presence of adenosine 5'-[gamma-32P]triphosphate ([gamma-32P]ATP) and a partially purified human placental insulin receptor preparation, insulin stimulates the phosphorylation of an Mr 94000 protein in a time- and dose-dependent manner. Half-maximal stimulation of 32P incorporation occurs at (2-3) X 10(-9) M insulin, a concentration identical with the Kd for insulin binding in this preparation. Immunoprecipitations with monoclonal anti-insulin receptor antibody demonstrate that the Mr 94000 protein kinase substrate is a component of the insulin receptor, the beta subunit. If the partially purified, soluble placental receptor preparation is immunoprecipitated and then exposed to [gamma-32P]ATP and insulin, phosphorylation of the Mr 94000 protein is maintained. The photoincorporation of 8-azido[alpha-32P]ATP into placental insulin receptor preparations was carried out to identify the ATP binding site responsible for the protein kinase activity. Photoincorporation into numerous proteins was observed, including both subunits of the insulin receptor. However, when photolabeling was performed in the presence of excess adenosine 5'-(beta, gamma-imidotriphosphate), a nonhydrolyzable ATP derivative, the beta subunit of the insulin receptor was the only species protected from label incorporation. These data indicate that the beta subunit of the insulin receptor has insulin-dependent protein kinase activity. Phosphotyrosine formation is the primary result of this activity in placental insulin receptor preparations.  相似文献   

10.
Monoclonal antibodies (8/1, 10/10, and 25/3) against rat brain type II protein kinase C were used for the immunochemical characterization of this kinase. These antibodies immunoprecipitated the type II protein kinase C in a dose-dependent manner but did neither to the type I nor III isozyme. Immunoblot analysis of the tryptic fragments from protein kinase C revealed that all three antibodies recognized the 27-38-kDa fragments, the phospholipid/phorbol ester-binding domain, but not the 45-48-kDa fragments, the kinase catalytic domain. The immune complexes of the kinase and the antibodies retained 70-80% of the kinase activity which was dependent on Ca2+ and phosphatidylserine and further activated by diacylglycerol or tumor-promoting phorbol ester. With antibody 8/1, the kinetic parameters with respect to Km for ATP and histone and K alpha for phosphatidylserine and phorbol 12,13-dibutyrate were not significantly influenced. However, the antibody causes variable effects on the K alpha for Ca2+ under different assay conditions. When determined in the presence of phosphatidylserine, the K alpha for Ca2+ was reduced by an order of magnitude (37 +/- 8 to 2.0 +/- 1.8 microM); in the presence of phosphatidylserine and phorbol 12,13-dibutyrate, the K alpha for Ca2+ was not significantly altered; and in the presence of phosphatidylserine and dioleoylglycerol, the kinase became an apparently Ca2+-independent enzyme. The effects of antibody 8/1 on the kinetic parameters of the enzyme for phorbol ester binding were different from those for kinase activity. This antibody causes a 20-30% reduction in phorbol ester binding and a 2-fold increase (1.9 +/- 0.2 to 3.9 +/- 0.3 micrograms/ml) in the concentration of phosphatidylserine required for half-maximal binding, but is without significant influence on those parameters for Ca2+ and phorbol 12,13-dibutyrate. The differential effects of antibody 8/1 on kinase activity and phorbol ester binding with respect to the kinetic parameter of phosphatidylserine suggest that the roles of this phospholipid in supporting phorbol ester binding and kinase activation are different. In the presence of the antibody, the autophosphorylations of the phospholipid/phorbol ester-binding domain and the kinase domain were reduced; the reduction was more pronounced for the former than for the latter. These results suggest that the epitope for antibody 8/1 is localized within the phospholipid/phorbol ester-binding domain at the region adjacent to the kinase domain so that the autophosphorylations of both domains are affected.  相似文献   

11.
Protein kinase C of rabbit iris smooth muscle was purified by the sequential use of three chromatographic steps, i.e. anion-exchange (DEAE-cellulose), gel filtration (Sephadex G-150) and substrate affinity (protamine-agarose), and its properties were investigated by using as substrate myosin light-chain protein (MLC) isolated from the same tissue. The enzyme appeared as a single band on SDS/polyacrylamide-gel electrophoresis, with a molecular mass of approx. 80 kDa. Histone H-1 and iris muscle MLC, but not rabbit skeletal-muscle MLC, were effective substrates for the enzyme, with apparent Km values of 3.0 and 16.6 microM respectively. The enzyme, with MLC as substrate, had the following characteristics. (a) Its activity was dependent on Ca2+ and phosphatidylserine (PS). In the presence of Ca2+ and PS, diolein and phorbol dibutyrate (PDBu) increased its activity by 61 and 65% respectively. Half-maximal activation of the enzyme (Ka) occurred at 10 microM free Ca2+, and in the presence of diolein and PDBu the apparent Ka for Ca2+ was decreased to 3 microM and 2 microM respectively. (b) Studies on the relative potency of various cofactors in activating the enzyme revealed that PS, phorbol myristate acetate and 1-stearoyl-2-arachidonylglycerol were the most potent of the phospholipids, phorbol esters and diacylglycerols respectively. (c) H-7, a protein kinase C inhibitor, inhibited MLC phosphorylation in a dose-dependent manner, with 50% inhibition at 10 microM. (d) Addition of carbamoylcholine (for 1 min) or PDBu (for 25 min) to iris sphincter muscle prelabelled with [32P]Pi specifically increased MLC phosphorylation, and only the stimulatory effect of the muscarinic agonist was blocked by atropine. The data provide additional support for a role for protein kinase C in the contractile response of the iris smooth muscle.  相似文献   

12.
Postsynaptic densities (PSDs) were prepared by the aqueous two-phase extraction of synaptic membranes in the presence of n-octyl glucoside. Incubation of postsynaptic densities with [gamma-32P]ATP resulted in the incorporation of 32P into a range of proteins. Isolation of glycoproteins from 32P-labelled PSDs by affinity chromatography on concanavalin A-agarose identified the postsynaptic glycoprotein of apparent Mr 180,000 (gp180) as a substrate for endogenous protein kinase(s). When the phosphorylation reaction was performed in the presence of Ca2+ and calmodulin, there was an overall 13-fold increase in the phosphorylation of PSD proteins. The largest effects of calmodulin were associated with two proteins of molecular weights 51,000 and 60,000, which showed average calmodulin-dependent increases in phosphorylation of 68-fold. The phosphorylation of gp180 was increased 7.5-fold in the presence of calmodulin. Fifty percent of maximum phosphorylation of proteins and glycoproteins occurred with a free Ca2+ concentration of 0.3 X 10(-6) M. The amounts 12.6 micrograms/ml and 9.1 micrograms/ml of calmodulin were required for 50% of maximum phosphorylation of proteins and glycoproteins, respectively. Peptide mapping experiments identified three major phosphorylation sites in gp180. The phosphorylation of all three sites was increased in the presence of calmodulin. Phosphoamino acid analysis of gp180 revealed that [32P]phosphoserine and [32P]phosphothreonine were both produced during the phosphorylation reaction, with phosphoserine being the predominant product. The phosphorylation of both amino acids was increased in the presence of calmodulin. [32P]phosphotyrosine was also identified as a product of the phosphorylation of gp180.  相似文献   

13.
A Ca2+- and phospholipid-dependent protein kinase (protein kinase C) was partially purified from the media of bovine aortas by chromatography on DEAE-Sephacel and phenyl-Sepharose. Enzyme activity was characterized with both histone and a 47 kDa platelet protein (P47) as substrates, because the properties of protein kinase C can be modified by the choice of substrate. Both phosphatidylserine and Ca2+ were required for kinase activity. With P47 as substrate, protein kinase C had a Ka for Ca2+ of 5 microM. Addition of diolein to the enzyme assay caused a marked stimulation of activity, especially at low Ca2+ concentrations, but the Ka for Ca2+ was shifted only slightly, to 2.5 microM. With histone as substrate, the enzyme had a very high Ka (greater than 50 microM) for Ca2+, which was substantially decreased to 3 microM-Ca2+ by diolein. A Triton X-100 mixed-micelle preparation of lipids was also utilized to assay protein kinase C with histone as the substrate. Under these conditions kinase activity was almost totally dependent on the presence of diolein; again, diolein caused a large decrease in the Ka for Ca2+, from greater than 100 microM to 2.5 microM. The increased sensitivity of protein kinase C to Ca2+ with P47 rather than histone, and the ability of diacylglycerol to activate protein kinase C without shifting the Ka for Ca2+, when P47 is the substrate, illustrate that the mechanism of protein kinase C activation is influenced by the exogenous substrate used to assay the enzyme.  相似文献   

14.
Ca2+-activated and phospholipid-dependent protein kinase (protein kinase C) isolated from rat brain cytosol undergoes autophosphorylation in the presence of Mg2+, ATP, Ca2+, phosphatidylserine, and diolein. Approximately 2-2.5 mol of phosphate were incorporated per mol of the kinase. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, the phosphorylated kinase showed a single protein band of Mr = 82,000 compared to the Mr = 80,000 of the nonphosphorylated enzyme. Analysis of the 32P-labeled tryptic peptides derived from the autophosphorylated kinase by peptide mapping revealed that multiple sites were phosphorylated. Both serine and threonine residues were found to be labeled with 32P. Limited proteolysis of the autophosphorylated kinase with trypsin resulted in the conversion of the kinase into a phospholipid- and Ca2+-independent form. Two major 32P-labeled fragments, Mr = 48,000 and 38,000, were formed as a result of proteolysis, suggesting that the catalytic domain and possibly the Ca2+- and phospholipid-binding region were both phosphorylated. Protein kinase C autophosphorylation has a Km for ATP (1.5 microM) about 10-fold lower than that for phosphorylation of exogenous substrates. The kinetically preferred autophosphorylation appears to be an intramolecular reaction. The autophosphorylated protein kinase C, unlike the protease-degraded enzyme, still depends on Ca2+ and phospholipid for maximal activity. However, the autophosphorylated form of the kinase has a lower Ka for Ca2+ and a higher affinity for the binding of [3H]phorbol-12, 13-dibutyrate. These findings suggest that autophosphorylation of protein kinase C may be important in the regulation of the enzymic activity subsequent to signal transduction.  相似文献   

15.
The cytoskeletons of Y-1 mouse adrenal tumor cells contain a calcium and phospholipid-dependent protein kinase (protein kinase C) that is bound sufficiently tight to resist extraction by 0.5% Triton but not by 1.0% Triton. The enzyme has been purified to near homogeneity from cytoskeleton and cytosol. It shows features typical of this type of kinase, namely a requirement for Ca2+ and phospholipid, stimulation by tumor promoters but not by nontumor-promoting phorbol esters, and inhibition by trifluoperazine. The enzyme shows specificity for four substrates found in the cytoskeleton, namely 80, 33, 20, and 18 kD. The first three substrates are phosphorylated by the enzyme; the fourth is dephosphorylated and is therefore affected by the kinase indirectly. The 80-kD protein is the kinase enzyme itself which is autophosphorylated in vitro and in the cytoskeleton. The 20-kD protein is myosin light chain. The 33- and 18-kD proteins are unidentified. The same substrates were phosphorylated when Y-1 cells were permeabilized with digitonin and incubated with [gamma-32P]ATP and phorbol-12-myristate-13-acetate. Partly purified protein kinase C changes the extent of phosphorylation of the same substrates when added to cytoskeletons previously extracted to remove endogenous protein kinase C. Addition of Ca2+, phosphatidylserine, and phorbol-12-myristate-13-acetate to cytoskeletons, and addition of these three agents plus protein kinase C to extracted cytoskeletons, causes these structures to undergo a rapid and extensive rounding. A similar change is induced in intact cells by addition of phorbol ester. It is concluded that protein kinase C is capable of changing the shape of adrenal cells by an action that involves autophosphorylation and phosphorylation of myosin light chain. This response may in turn be related to the steroidogenic responses to ACTH and cyclic AMP.  相似文献   

16.
Treatment of bovine chromaffin cells with nicotinic agonists, phorbol esters, and growth factors increases protein kinase activity toward microtubule-associated protein-2 and myelin basic protein (MBP) in vitro. To characterize the kinases that are activated by these agents, we separated chromaffin cell proteins by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels into which MBP had been incorporated, allowed the proteins to renature, and then assayed MBP kinase activity by incubating the gels with [gamma-32P]ATP. Chromaffin cells contain a family of kinases that phosphorylate MBP in vitro. Two of these kinases, of M(r) 46,000 and 42,000 (PK46 and PK42), were activated by treatment of the cells with dimethylphenylpiperazinium (DMPP), phorbol 12,13-dibutyrate (PDBu), or insulin-like growth factor I (IGF-I). Activation of PK46 and PK42 by DMPP was dependent on extracellular Ca2+, whereas the effects of PDBu and IGF-I were Ca2+ independent. Down-regulation of protein kinase C by incubation of the cells with PDBu abolished the activation of PK46 and PK42 by DMPP, PDBu, and IGF-I. Staurosporine, a protein kinase C inhibitor, prevented the activation of PK46 and PK42 by DMPP and PDBu but did not block the activation of these kinases by IGF-I. Immunoblotting experiments with antiphosphotyrosine (anti-PTyr) antibodies demonstrated that agents that increased the kinase activities of PK46 and PK42 also increased the apparent PTyr content of M(r) 46,000 and 42,000 proteins. PK46 and PK42 comigrated with proteins that reacted with antibodies against extracellular signal-regulated kinases (ERKs). Thus, PK46 and PK42 appear to be the bovine homologues of ERK1 and ERK2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Protein kinase C was extracted from mouse brain and partially purified by ion-exchange chromatography on a DEAE-cellulose column. Its activity was determined by incorporation of phosphate from [gamma-32P]ATP into histone H2b. The semisynthetic alkyl-phospholipid plasmanyl-(N-acyl)-ethanolamine (PNAEs) with selective antitumor activity inhibited the activity of the protein kinase in a cell-free system in the presence of phosphatidylserine, a protein kinase C activator. The inhibition was competitive with respect to phosphatidylserine, the inhibition constant being 40 microM.  相似文献   

18.
Bovine thyroid 100,000 X g supernatant contained diacylglycerol-activated, calcium/phospholipid-dependent protein kinase (protein kinase C). The protein kinase C was partially purified using ion-exchange chromatography and characterized. Substrate specificity studies revealed that the enzyme was most active when histone F1 was used as substrate. The thyroid protein kinase C was not stimulated by Ca2+ or phosphatidylserine (PS), but was stimulated by the combination of the two by 570%. Diolein stimulated the kinase by increasing its sensitivity to Ca2+. Other phospholipids could not substitute for PS and were ineffective in stimulating the protein kinase C in the absence of diolein. However, in the presence of diolein some of the other phospholipids were stimulatory albeit not to the extent of PS. Quercitin, a protein kinase C inhibitor in other systems, inhibited the thyroid enzyme in a dose-related manner. Protein kinase C could also be demonstrated using endogenous thyroid proteins as substrate. Separation of these 32P-labelled proteins by electrophoresis and subsequent autoradiography revealed that three proteins were phosphorylated by the protein kinase C of approximate molecular weights 60,000, 45,000, and less than 29,000. These results offer a possible mechanism by which Ca2+ and/or diacylglycerol effects may be mediated in thyroid.  相似文献   

19.
Sequences termed v-abl, which encode the protein-tyrosine kinase activity of Abelson murine leukemia virus, have been expressed in Escherichia coli as a fusion product (ptabl50 kinase). This fusion protein contains 80 amino acids of SV40 small t and the 403 amino acid protein kinase domain of v-abl. We report here the purification and characterization of this kinase. The purified material contains two proteins (Mr = 59,800 and 57,200), both of which possess sequences derived from v-abl. Overall purification was 3,750-fold, with a 31% yield, such that 117 micrograms of kinase could be obtained from 40 g of E. coli within 6-7 days. The specific kinase activity is over 170 mumol of phosphate min-1 mumol-1, comparable to the most active protein-serine kinases. Kinase activity is insensitive to K+, Na+, Ca2+, Ca2+-calmodulin, cAMP, or cAMP-dependent protein kinase inhibitor. The Km for ATP is dependent on the concentration of the second substrate. GTP can also be used as a phosphate donor. The enzyme can phosphorylate peptides consisting of as few as two amino acids and, at a very low rate, free tyrosine. Incubation of the kinase with [gamma-32P]ATP results in incorporation of 1.0 mol of phosphate/mol of protein. This reaction, however, cannot be blocked by prior incubation with unlabeled ATP. Incubation of 32P-labeled kinase with either ADP or ATP results in the synthesis of [32P]ATP. This suggests the phosphotyrosine residue on the Abelson kinase contains a high energy phosphate bond.  相似文献   

20.
In this study we examined the effects of insulin on protein kinase C (PKC) activity in cultured fetal chick neurons. PKC activity, measured as 32P incorporation into histone H1 in the presence of calcium (500 microM), phosphatidylserine (100 micrograms/ml), and diolein (3.3 micrograms/ml) minus the incorporation in the presence of calcium alone, was detected in neuronal cytosolic (207 +/- 33 pmol/min/mg) and membrane (33 +/- 8 pmol/min/mg) fractions. Insulin added to intact neurons increased the activity of PKC in both cytosolic and membrane fractions by about 40%. Neurons preincubated with cycloheximide (10 micrograms/ml) 30 min prior to insulin treatment showed the same degree of stimulation of PKC activity by insulin. The activation of PKC was maximal within 5-10 min of insulin exposure and was sustained for at least 60 min. Insulin stimulated PKC in a dose-dependent manner, with a maximal response obtained at 100 ng/ml. Addition of phosphatidylserine and diolein to neuronal cell extracts resulted in the phosphorylation of four major cytosolic proteins (70, 57, 18, and 16 kDa) and one major membrane protein (75 kDa). Phosphorylation of all five proteins was increased 2-fold in extracts from insulin-treated neurons. Immunoblot analysis of whole cell extracts using antibodies against PKC-alpha, PKC-beta, PKC-gamma, PKC-delta, and PKC-epsilon revealed that cultured fetal chick neurons contained only one of these PKC isoforms, the epsilon-isoform. The enzyme was mostly cytosolic. Insulin had no effect on either the amount of distribution of PKC-epsilon in cultured neurons but induced a small change in the mobility of PKC-epsilon on sodium dodecyl sulfate-polyacrylamide gels. When assay conditions were designed to measure specifically the activity of PKC-epsilon, using a synthetic peptide substrate in the absence of calcium, activity was 50 +/- 12% higher in insulin-treated cells (p less than 0.005). PKC activity in control and insulin treated-neurons was almost completely inhibited when assays included a peptide identical to the pseudo-substrate binding site of PKC-epsilon. We conclude that PKC-epsilon is the major PKC isoform present in cultured fetal chick neurons. Insulin stimulates PKC-epsilon activity by a mechanism that does not involve translocation of the enzyme from cytosol to membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号