首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a fast and reliable method for the separation of two membrane fractions respectively enriched in outer and inner envelope membranes from isolated, intact, purified spinach chloroplasts kept in a hypertonic medium (0.6 M mannitol). This separation was achieved by osmotically shrinking the inner envelope membrane, thus widening the intermembrane space, and then subsequently removing the "loosened" outer envelope membrane by applying low pressure to the shrunken chloroplasts and slowly extruding them through the small aperture of a Yeda press under controlled conditions. By centrifugation of the mixture obtained through a discontinuous sucrose gradient, we were able to separate two membrane fractions having different densities (fraction 2 or light fraction, d = 1.08 g/cm3, and fraction 3 or heavy fraction, d = 1.13 g/cm3). The recent characterization of polypeptides localized on the outer envelope membrane from spinach chloroplasts, E10 and E24 (Joyard, J., Billecocq, A., Bartlett, S. G., Block, M. A., Chua, N.-H., and Douce, R. J. Biol. Chem., 258, 10000-10006) enabled us to characterize our two membrane fractions. Analyses of the polypeptides by sodium dodecyl sulfate-polyacryl-amide gel electrophoresis and immunoblotting have shown that fraction 2 (light fraction) was completely devoid of polypeptide E30, which is involved in the transport of phosphate across the inner envelope membrane, but was enriched in polypeptides E10 and E24. The reverse was true for fraction 3 (heavy fraction). Under these conditions, it is clear that fraction 2 is strongly enriched in outer envelope membrane whereas fraction 3 consisted mostly of inner envelope membrane. Indeed, by immunoelectrophoresis, we were able to demonstrate that, on a protein basis, fraction 2 contained about 90% of outer membrane, whereas fraction 3 contained about 80% of inner membrane. Further characterization of the outer envelope membrane was achieved by using thermolysin, a nonpenetrant protease.  相似文献   

2.
The prenylquinone content and biosynthetic capabilities of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts were analyzed. Both envelope membranes contain prenylquinones, and in almost similar amounts (on a protein basis). However, the outer envelope membrane contains more alpha-tocopherol than the inner one although this prenylquinone is the major one in both fractions. On the contrary, plastoquinone-9 is present in higher amounts in the inner envelope membrane than in the outer one. In addition, it has been demonstrated that all the enzymes involved in the last steps of alpha-tocopherol and plastoquinone-9 biosynthesis, i.e., homogentisate decarboxylase polyprenyltransferase, S-adenosyl-methionine:methyl-6-phytylquinol methyltransferase, S-adenosyl-methionine: alpha-tocopherol methyltransferase, homogentisate decarboxylase solanesyltransferase, S-adenosyl-methionine:methyl-6-solanesylquinol methyltransferase, and possibly 2,3-dimethylphytylquinol cyclase, are localized on the inner envelope membrane. These results demonstrate that the inner membrane of the chloroplast envelope plays a key role in chloroplast biogenesis, and especially for the synthesis of the two major plastid prenylquinones.  相似文献   

3.
We have examined the effects of phospholipase C from Bacillus cereus on the extent of phospholipid hydrolysis in envelope membrane vesicles and in intact chloroplasts. When isolated envelope vesicles were incubated in presence of phospholipase C, phosphatidylcholine and phosphatidylglycerol, but not phosphatidylinositol, were totally converted into diacylglycerol if they were available to the enzyme (i.e., when the vesicles were sonicated in presence of phospholipase C). These experiments demonstrate that phospholipase C can be used to probe the availability of phosphatidylcholine and phosphatidylglycerol in the cytosolic leaflet of the outer envelope membrane from spinach chloroplasts. When isolated, purified, intact chloroplasts were incubated with low amounts of phospholipase C (0.3 U/mg chlorophyll) under very mild conditions (12 degrees C for 1 min), greater than 80% of phosphatidylcholine molecules and almost none of phosphatidylglycerol molecules were hydrolyzed. Since we have also demonstrated, by using several different methods (phase-contrast and electron microscopy, immunochemical and electrophoretic analyses) that isolated spinach chloroplasts, and especially their outer envelope membrane, remained intact after mild treatment with phospholipase C, we can conclude that there is a marked asymmetric distribution of phospholipids across the outer envelope membrane of spinach chloroplasts. Phosphatidylcholine, the major polar lipid of the outer envelope membrane, is almost entirely accessible from the cytosolic side of the membrane and therefore is probably localized in the outer leaflet of the outer envelope bilayer. On the contrary, phosphatidylglycerol, the major polar lipid in the inner envelope membrane and the thylakoids, is probably not accessible to phospholipase C from the cytosol and therefore is probably localized mostly in the inner leaflet of the outer envelope membrane and in the other chloroplast membranes.  相似文献   

4.
Partition in an aqueous Dextran-polyethylene glycol two-phase system has been used for the separation of chloroplast membrane vesicles obtained by press treatment of a grana-enriched fraction after unstacking in a low salt buffer.

The fractions obtained were analysed with respect to chlorophyll, photochemical activities and ultrastructural characteristics. The results reveal that the material partitioning to the Dextran-rich bottom phase consisted of large membrane vesicles possessing mainly Photosystem II properties with very low contribution from Photosystem I. Measurements of the H2O to phenyl-p-benzoquinone and ascorbate-Cl2Ind to NADP+ electron transport rates indicate a ratio of around six between Photosystem II and I.

The total fractionation procedure could be completed within 2–3 h with high recovery of both the Photosystem II water-splitting activity and the Photosystem I reduction of NADP+.

These data demonstrate that press treatment of low-salt destabilized grana membranes yields a population of highly Photosystem-II enriched membrane vesicles which can be discriminated by the phase system. We suggest that such membrane vesicles originate from large regions in the native grana membrane which contain virtually only Photosystem II.  相似文献   


5.
At 77 K, under excitation at 440 nm, two major fluorescence emission peaks were observed in envelope membranes from spinach chloroplasts at 636 and 680 nm. A narrow range of wavelengths around 440 nm and a wider range of wavelengths between 390 and 440 nm, respectively, were responsible for excitation of the 636 and 680 nm fluorescence emissions which, in marked contrast with thylakoid fluorescence emission, were devoid of any exciting components between 460 and 500 nm. In acetonic extract of envelope membranes, two fluorescence emission peaks were observed at 635 and 675 nm. After extraction of the acetonic solution by nonpolar solvents (petroleum ether or hexane), the 675 nm fluorescence emission was partitioned between the polar and nonpolar phases whereas the 635 nm fluorescence emission was solely recovered in the polar phase. All together, the results obtained suggest that envelope membranes contain low amounts of pigments having the absorption and fluorescence spectroscopic properties, together with the behavior in polar/nonpolar solvents, of protochlorophyllide and chlorophyllide. In addition, modulation of the level of fluorescence at 636 and 680 nm could be obtained by addition of NADPH to envelope membranes under illumination. The presence of protochlorophyllide in chloroplast envelope membranes together with its possible photoconversion into chlorophyllide could have major implication for the understanding of chlorophyll biosynthesis in mature chloroplasts.  相似文献   

6.
The activity of adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3) in both the forward (2ADP → ATP + AMP) and backward (ATP + AMP → 2ADP) reactions was found to be associated with the envelope membranes which were isolated from spinach chloroplasts. Sonication and repeated washing in a medium of high ionic strength were unable to release the enzymes from the envelope membranes. Adenylate kinase bound to the envelope is stable in the cold and inactivated by heat and acid treatments. The enzyme requires magnesium ion as an activator. The pH-activity profile of the forward reaction catalyzed by membrane-bound adenylate kinase gave a maximal activity at pH 8.5. The apparent Michaelis constant, Km, value for ADP in the forward reaction was estimated to be 1.3 ± 0.2 × 10?4m. A Lineweaver-Burk plot of the forward reaction gave a straight line when the reciprocal of the reaction rate was plotted versus the reciprocal, and not the square of the reciprocal, of the concentration of substrate ADP. This favors the view that the adenylate kinase bound to the chloroplast envelope has a single or equivalent binding site of Mg-ADP?. The probable involvement of adenylate kinase bound to the chloroplast envelope in controlling the energy pool and adenylate translocation in chloroplasts is suggested.  相似文献   

7.
Envelope membranes of spinach chloroplasts contain appreciable activities of the carotenogenic enzymes phytoene synthase (formation of phytoene by condensation of two molecules geranylgeranyl pyrophosphate) and phytoene dehydrogenase (formation of lycopene from phytoene), plus a phosphatase activity. These results were obtained by coincubation experiments using isolated envelope membranes and either a phytoene-forming in vitro system (from [1-14C]isopentenyl pyrophosphate) or [14C]geranylgeranyl pyrophosphate or a geranylgeranyl-pyrophosphate-forming in vitro system (from [1-14C]isopentenyl pyrophosphate). Within thylakoids carotenogenic enzymes could not be detected. It is concluded that the chloroplast envelope is at least a principal site of the membrane-bound steps of carotenoid biosynthesis in chloroplasts.Abbreviastions Chlorophyll aGC Chlorophyll a, esterified with geranylgeraniol - GGPP geranylgeranyl pyrophosphate - HPLC high pressure liquid chromatography - IPP isopentenyl pyrophosphate  相似文献   

8.
9.
Envelope membranes were isolated by sucrose density gradient floatation centrifugation from the homogenate of cyanelles prepared from Cyanophora paradoxa. Two yellow bands were separated after 40 h of centrifugation. The buoyant density of one of the two fractions (fraction Y2) coincided with that of inner envelope membranes of spinach or plasma membranes of cyanobacteria. The other yellow fraction (fraction Y1) migrated to top of sucrose-gradient even at 0% sucrose. Pigment analysis revealed that the heavy yellow fraction was rich in zeaxanthin while the light fraction was rich in β-carotene, and the both fractions contained practically no chlorophylls. Another yellow fraction (fraction Y3) was isolated from the phycobiliprotein fraction, which was the position where the sample was placed for gradient centrifugation. Its buoyant density and absorption spectra were similar to outer membranes of cyanobacteria. We have assigned fractions Y2 and Y3 as inner and outer envelope membrane fractions of cyanelles, respectively. Protein compositions were rather different between the two envelope membranes indicating little cross-contamination among the fractions. H. Koike and Y. Ikeda contributed equally.  相似文献   

10.
Abstract Highly purified preparations of inner, i.e. cytoplasmic and intracytoplasmic, membranes and outer membranes were isolated from Nitrobacter hamburgensis strain X14 by sucrose density-gradient centrifugation of cell-free extracts. The two membrane fractions differed markedly in morphology, density, and protein composition as determined by polyacrylamide gel electrophoresis. The inner membrane fraction was enriched in NADH oxidase and nitrite oxidase activity. It contained four major protein bands of apparent M rs of 28 000, 32 000, 70 000, and 116000. The outer membrane fraction was characterized by the presence of 2-keto-3-deoxyoctonate and contained two major proteins of apparent M rs of 13 000 and 50 000. There was no evidence for differences between cytoplasmic and intracytoplasmic membranes.  相似文献   

11.
Miquel M  Dubacq JP 《Plant physiology》1992,100(1):472-481
When incubated with [1-14C]acetate and cofactors (ATP, Coenzyme A, sn-glycerol-3-phosphate, UDPgalactose, and NADH), intact chloroplasts synthesized fatty acids that were subsequently incorporated into most of the lipid classes. To study lipid synthesis at the chloroplast envelope membrane level, 14C-labeled pea (Pisum sativum) chloroplasts were subfractionated using a single flotation gradient. The different envelope membrane fractions were characterized by their density, lipid and polypeptide composition, and the localization of enzymic activities (UDPgalactose-1,2 diacylglycerol galactosyltransferase, Mg2+-dependent ATPase). They were identified as very pure outer membranes (light fraction) and strongly enriched inner membranes (heavy fraction). A fraction of intermediate density, which probably contained double membranes, was also isolated. Labeled glycerolipids recovered in the inner envelope membrane were phosphatidic acid, phosphatidyl-glycerol, 1,2 diacylglycerol, and monogalactosyldiacylglycerol. Their 14C-fatty acid composition indicated that a biosynthetic pathway similar to the prokaryotic pathway present in cyanobacteria occurred in the inner membrane. In the outer membrane, phosphatidylcholine was the most labeled glycerolipid. Phosphatidic acid, phosphatidylglycerol, 1,2 diacylglycerol, and monogalactosyldiacylglycerol were also labeled. The 14C-fatty acid composition of these lipids showed a higher proportion of oleate than palmitate. This labeling, different from that of the inner membrane, could result either from transacylation activities or from a biosynthetic pathway not yet described in pea and occurring partly in the outer chloroplast envelope membrane. This metabolism would work on an oleate-rich pool of fatty acids, possibly due to the export of oleate from chloroplast toward the extrachloroplastic medium. The respective roles of each membrane for chloroplast lipid synthesis are emphasized.  相似文献   

12.
Hydrophobic envelope proteins were extracted by phenol from a glucosamine- and leucine-requiring mutant of Escherichia coli K-12 (E-110). Three protein fractions labelled with D-[1-1 4C]glucosamine and L-[4,5-3H]leucine were obtained by electrophoretic separation. Envelope were isolated from cells labeleed with D-[1-1 4C]glucosamine—HCL and acid hydrolyzed. At least 68% of the radioactivity was recovered as glucosamine and glucose with no random distribution of label. Fingerprinting of pronase digests of glucosamine-labelled proteins showed four radioactive spots associated with peptides. Te glycoproteins were pronase- and trypsin-sensitive and had apparent molecular weights of 11 000 (fast mobility), 35 000 (intermediate mobility) and 62 000 (slow mobility) as estimated by sodium dodecyl sulfate-polyacrylamide disc electrophoresis. The two heavier fractions were labelled with meso-diamino[1,7-1 4C2]pimelic acid, while ortho[3 2P]phosphate was not incorporated into any fraction. The glucosamine radioactivity of the fast fraction underwent rapid changes upon a chase with non-radioactive glucosamine. Using a Sephadex LH-20 column, the radioactive proteins were separated from the phenol and subsequently fractionated on a DEAS-cellulose column. The DEAE-cellulose fractions were distinct from each other in the number and composition of protein bands, when analyzed by sodium dodecyl sulfate-polyacrylamide disc electrophoresis. Radioactive bands with intermediate and fast electrophoretic mobilities were found in separate DEAE-cellulose fractions.  相似文献   

13.
Intact spinach chloroplasts that had been purified on gradients of silica sol incorporated [35S]methionine into soluble and membrane-bound products, using light as the sole energy source. The labeled chloroplasts were lysed osmotically and fractionated on a discontinuous gradient of sucrose into the soluble fraction and the thylakoid and envelope membranes. About 29% of the radioactivity in the chloroplast was recovered in the soluble fraction, 59% in the thylakoid membranes, and 0.1% in the envelope membranes. The products of protein synthesis in the different fractions, as well as in the whole chloroplast, were analyzed by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. There were two zones of radioactivity in the gels of the soluble fraction, the major zone coincident with the large subunit of ribulose diphosphate carboxylase at a molecular weight of about 50,000. The thylakoid membranes contained five labeled polypeptides, the most active having a molecular weight of about 31,000. The envelope membranes contained a major radioactive component of a molecular weight of about 50,000 and two other minor components.  相似文献   

14.
Using fluorescence spectroscopy, we have demonstrated that isolated envelope membranes from mature spinach chloroplasts catalyze the phototransformation of endogenous protochlorophyllide into chlorophyllide in presence of NADPH, but not in presence of NADH. Protochlorophyllide reductase was characterized further using monospecific antibodies (anti-protochlorophyllide reductase) raised against the purified enzyme from oat. In mature spinach chloroplasts, protochlorophyllide reductase is present only in envelope membranes. We have demonstrated that the envelope protochlorophyllide reductase, a 37,000-dalton polypeptide, is only a minor envelope component and is present on the outer surface of the outer envelope membrane. This conclusion is supported by several lines of evidence: (a) the envelope polypeptide that was immunodecorated with anti-protochlorophyllide reductase can be distinguished from the major 37,000-dalton envelope polypeptide E37 (which was identified by monospecific antibodies) only after two-dimensional polyacrylamide gel electrophoresis; (b) the envelope protochlorophyllide reductase was hydrolyzed when isolated intact chloroplasts were incubated in presence of thermolysin; and (c) isolated intact chloroplasts strongly agglutinate when incubated in presence of antibodies raised against protochlorophyllide reductase. These results demonstrate that major differences exist between chloroplasts and etioplasts with respect to protochlorophyllide reductase levels and localization. The presence on the chloroplast envelope membrane of both the substrate (protochlorophyllide) and the enzyme (protochlorophyllide reductase) necessary for chlorophyllide synthesis could have major implications for the understanding of chlorophyll biosynthesis in mature chloroplasts.  相似文献   

15.
We have developed a reliable procedure for the purification of envelope membranes from cauliflower (Brassica oleracea L.) bud plastids and sycamore (Acer pseudoplatanus L.) cell amyloplasts. After disruption of purified intact plastids, separation of envelope membranes was achieved by centrifugation on a linear sucrose gradient. A membrane fraction, having a density of 1.122 grams per cubic centimeter and containing carotenoids, was identified as the plastid envelope by the presence of monogalactosyldiacylglycerol synthase. Using antibodies raised against spinach chloroplast envelope polypeptides E24 and E30, we have demonstrated that both the outer and the inner envelope membranes were present in this envelope fraction. The major polypeptide in the envelope fractions from sycamore and cauliflower plastids was identified immunologically as the phosphate translocator. In the envelope membranes from cauliflower and sycamore plastids, the major glycerolipids were monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and phosphatidylcholine. Purified envelope membranes from cauliflower bud plastids and sycamore amyloplasts also contained a galactolipid:galactolipid galactosyltransferase, enzymes for phosphatidic acid and diacylglycerol biosynthesis, acyl-coenzyme A thioesterase, and acyl-coenzyme A synthetase. These results demonstrate that envelope membranes from nongreen plastids present a high level of homology with chloroplasts envelope membranes.  相似文献   

16.
The envelope membrane was isolated from intact spinach chloroplastsby gentle osmotic treatment in a medium containing appropriateamounts of cations to prevent dissociation and fragmentationof the thylakoids. This treatment allowed us to separate effectivelythe envelope membranes from the thylakoids with one-step (0.6M/0.9 M) sucrose density gradient centrifugation. The envelope membrane contained both glyceroglycolipids andglycerophospholipids, as does the thylakoid membrane. Therewere, however, notable differences in the relative amounts oflipid components between these two membranes. The major glyceroglycolipidin the envelope membrane was digalactosyl diglyceride, whereasmonogalactosyl diglyceride was the major one in the thylakoid.The envelope membrane was characterized by a high content ofglycerophospholipids, as much as three-fold that in the thylakoidmembrane. Phosphatidyl choline, which is known to be minor inthe thylakoids and abundant in the microsomal and mitochondrialmembranes, was a major component, accounting for 50% of thetotal glycerophospholipids. The dual character of lipid compositionof the envelope membrane is discussed in terms of its chemicaland structural connection to the other intracellular membranesystems. (Received May 26, 1975; )  相似文献   

17.
R Dumas  J Joyard    R Douce 《The Biochemical journal》1989,262(3):971-976
Acetohydroxyacid reductoisomerase was purified over 400-fold to a specific activity of 62 nkat.mg-1, with 2-aceto-2-hydroxybutyrate as substrate, from the stroma of spinach leaf chloroplasts. The enzyme was not intrinsically membrane bound. The native enzyme was a tetramer with a subunit Mr of 59,000. The activity was optimum between pH 7.5 and 8.5. The apparent Km for 2-acetolactate was 25 microM and for 2-aceto-2-hydroxybutyrate was 37 microM. The enzyme required Mg2+ and the Vmax. was attained at physiological Mg2+ concentrations. NADP+ competitively inhibited the reaction when NADPH was the varied substrate. The native enzyme eluted from Mono-Q ion-exchange resins as three distinct peaks of activity. This elution pattern was preserved when the peaks were combined, dialysed and re-chromatographed. Each form exhibited identical Mr of 59,000 after SDS/polyacrylamide gel electrophoresis (PAGE), whereas they were easily distinguishable from each other after PAGE under non-denaturing conditions. These results provide evidence for the existence of multiple forms of acetohydroxyacid reductoisomerase in chloroplasts isolated from spinach leaves.  相似文献   

18.
The chloroplast envelope plays critical roles in the synthesis and regulated transport of key metabolites, including intermediates in photosynthesis and lipid metabolism. Despite this importance, the biogenesis of the envelope membranes has not been investigated in detail. To identify the determinants of protein targeting to the inner envelope membrane (IM), we investigated the targeting of the nucleus-encoded integral IM protein, atTic40. We found that pre-atTic40 is imported into chloroplasts and processed to an intermediate size (int-atTic40) before insertion into the IM. Int-atTic40 is soluble and inserts into the IM from the internal stromal compartment. We also show that atTic40 and a second IM protein, atTic110, can target and insert into isolated IM vesicles in vitro. Collectively, our experiments are consistent with a "postimport" mechanism in which the IM proteins are first imported from the cytoplasm and subsequently inserted into the IM from the stroma.  相似文献   

19.
W. Yu  P.P. Ho  R.R. Alfano  Michael Seibert 《BBA》1975,387(1):159-164
The fluorescent emission kinetics of spinach subchloroplast Photosystems I and II particles have been studied on a picosecond time scale. Using picosecond laser pulses and an optical Kerr gate, the fluorescent decay times are measured to be 60±10 ps, and 200±20 ps for Photosystems I and II, respectively. The quantum yields are calculated to be 0.004 for Photosystem I and 0.013 for Photosystem II. Theory of exciton energy transfer and trapping is applied for the determination of intermolecular potential energy in the photosystems.  相似文献   

20.
Bicarbonate uptake by isolated chloroplast envelope membranes and intact chloroplasts of spinach (Spinacia oleracea L. var. Viroflay) in darkness exhibited a similar dependency upon temperature, pH, time, and concentrations of isolated or attached envelope membranes. This similarity in uptake properties demonstrates the usefulness of the envelope membranes for the study of chloroplast permeability. Maximal rates for dark HCO3- uptake by isolated envelope membranes and intact chloroplasts were more than sufficient to account for the maximal rates of photosynthetic CO2 fixation observed with intact chloroplasts. The active species involved in the uptake process was found to be HCO3- and not CO2. The significance of HCO3- uptake and its relationship to carbonic anhydrase and ribulose diphosphate carboxylase is discussed. Conditions for maximal HCO3- uptake in darkness by intact chloroplasts were found to be similar to those required for maximal photosynthetic CO2 fixation, suggesting that HCO3- uptake by the envelope membrane may regulate photosynthetic CO2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号