首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study compared the nuclear transfer (NT) embryo development rates of adult and fetal cells within the same genotype. The adult fibroblast cells were obtained from a 21-yr-old Brahman bull. The fetal cells were derived from a Day 40 NT fetus previously cloned using cells from the Brahman bull. Overall, similar numbers of blastocysts developed from both adult (53 of 190; 28%) and fetal (39 of 140; 28%) donor cells. Improved blastocyst development rates were observed when fetal cells were serum-starved (serum-fed 12% vs. serum-starved 43%; P < 0.01) whereas there was no similar benefit when adult cells were serum-starved (both serum-fed and serum-starved 28%). Day 30 pregnancy rates were similar for blastocysts derived from adult (6 of 26; 23%) or fetal (5 of 32; 16%) cells. Day 90 pregnancy rates were 3 of 26 for adult and 0 of 32 for the fetal cell lines. One viable bull calf derived from a 21-yr-old serum-starved adult skin fibroblast was born in August 1999. In summary, somatic NT embryo development rates were similar whether adult or fetal cells, from the same genotype, were used as donor cells. Serum starvation of these adult donor cells did not improve development rates of NT embryos to blastocyst, but when fetal cells were serum-starved, there was a significant increase in development to blastocyst.  相似文献   

2.
Production of cloned pigs from salivary gland-derived progenitor cells   总被引:1,自引:0,他引:1  
To achieve tissue stem cell transplantation in clinical settings, translational studies using large animal models are essential to confirm the efficacy and safety of therapy. Therefore, with the ultimate objective of constructing a porcine model of stem cell transplantation in the present study we attempted to clone pigs using porcine salivary gland-derived progenitor cells (pSGPs) as nuclear donors. Normal chromosomal compositions of pSGPs were maintained after five to eight passages (73%, 41 of 56). Cell cycle was efficiently synchronized in G(0)/G(1) phase after 2 days of serum-starved culture (79%). Characteristics of multipotent pSGPs, that is, CD49f and intracellular laminin staining patterns, were unchanged after serum-starved culture. Developmental rate of blastocysts from embryos reconstructed using pSGPs as nuclear donors was significantly higher when compared to embryos reconstructed using fetal fibroblasts (27.7%, 38 of 137 vs. 12.8%, 17 of 138; p < 0.05). When a total of 615 reconstructed embryos were transplanted into four recipient gilts, all gilts became pregnant and produced 12 piglets. These findings suggest that pSGPs represent appropriate donor cells for porcine somatic cell nuclear transfer.  相似文献   

3.
The in vitro development of porcine nuclear transfer embryos constructed using primary cultures from day 25 fetal fibroblasts which were either rapidly dividing (cycling) or had their cell-cycle synchronized in G0/G1 using serum starvation (serum-starved) was examined. Oocyte-karyoplast complexes were fused and activated simultaneously and then cultured in vitro for seven days to assess development. Fusion rates were not different for either cell population. The proportion of reconstructed embryos that cleaved was higher in the cycling group compared to the serum-starved group (79 vs. 56% respectively; P < 0.05). Development to the 4-cell stage was not different using either population. Both treatments supported similar rates of development to the morula (1.5 vs. 7%, cycling vs. serum-starved) and blastocyst stage (1.5 vs. 3%, cycling vs. serum-starved). The blastocyst produced using cycling cells had a total cell number of 10. Total cell numbers for the three blastocysts produced serum-starved cells were 22, 24, and 33. These blastocysts had inner cell mass numbers of 0, 15, and 4, respectively. Six hundred and thirty-five nuclear transfer embryos reconstructed using serum-starved cells were transferred to 15 temporarily mated recipients for 3-4 days. Of these, 486 were recovered (77% recovery rate) of which 106 (22%) had developed to the 4-cell stage or later. These were transferred to a total of 15 recipients which were either unmated or mated. Seven recipients farrowed a total of 51 piglets. Microsatellite analysis revealed that none of these were derived from the nuclear transfer embryos transferred.  相似文献   

4.
The aim of this study was to investigate whether roscovitine (the cyclin-dependent kinase 2 inhibitor) effectively induces synchronization of the donor cell cycle at G0/G1 and to examine the effect of donor cell cycle synchronization protocols on canine somatic cell nucleus transfer. Canine fibroblasts were obtained from skin biopsy cultures taken from a 7-yr-old retriever. The donor cell cycle was synchronized either by culturing cells to reach confluency or by treating cells with 15 μg/mL roscovitine for 24 h. Cell cycle stages and apoptosis were analyzed by flow cytometry. After synchronization of the donor cell cycle, cells were placed with enucleated in vivo-matured dog oocytes, fused by electric stimulation, activated, and transferred into 18 naturally estrus-synchronized surrogates. There was no significant difference in cell cycle synchronization and apoptosis rates between the confluent and roscovitine groups. After transfer of reconstructed embryos, pregnancy was detected in three of nine surrogates that received cloned embryos reconstructed with roscovitine-treated cells, whereas only one of nine surrogates was pregnant after transfer of cloned embryos reconstructed with confluent cells. One pregnant female from the confluent cell group delivered one live and one dead pup, but the live one died within 5 days after birth. Three pregnant females from the roscovitine-treated cell group delivered eight live pups and one dead pup, and one of eight live pups died within 6 days after birth. In conclusion, the current results demonstrated that reconstructing embryos with roscovitine-treated cells resulted in increased efficiency of canine somatic cell nucleus transfer.  相似文献   

5.
Nuclear-cytoplasmic incompatibilities are known to play a significant role in the developmental outcome of embryos produced by nuclear transfer, particularly when metaphase arrested oocytes are used as hosts for interphase donor nuclei. To further our understanding of how cell cycle coordination affects somatic cell cloning, somatic cells at different stages of the cell cycle were fused to host oocytes either before (metaphase II, M-II) or after (telophase II, T-II) activation. To obtain cells at different stages of the cell cycle, fetal fibroblast (FF) and granulosa cells (GC) were treated with roscovitine, an inhibitor of cyclin-dependent kinases (CDKs) resulting in a large percentage of cells in S/G(2)-phase. In contrast to the M-II group, which did better with confluent cells, embryos reconstructed with T-II cytoplasts resulted in higher rates of blastocyst formation when fused to cells recovered at 16-24 h after passage. Embryos reconstructed with FF treated with roscovitine and T-II cytoplasts (Rosc/T-II) resulted in similar blastocyst rate compared to those produced with confluent cells and M-II cytoplasts (Conf/M-II). Transfer of blastocysts to surrogate heifers resulted pregnancies and birth of healthy calves from Rosc/T-II and Conf/M-II reconstructed embryos. These results indicate that, when combined with nuclear donor cells at specific cell cycle stages, M-II and T-II bovine oocytes are similarly effective in supporting the reprogramming of somatic cell nuclei.  相似文献   

6.
The efficiency of nuclear transfer (NT) using two primary cultures of fetal fibroblasts (FF1 and FF2) was compared vs. the same cultures transfected with an expression vector in which the bovine prochymosin coding sequence is placed under the control of the bovine alpha(S1)-casein promoter (TFF1 and TFF2). In addition, fibroblasts of a cloned transgenic fetus (TRFF1) derived from TFF1 and ear skin fibroblasts of a 1-month-old cloned transgenic calf (TRCF1) derived from TRFF1 were used as nuclear donors. Embryos reconstructed from FF1 (44%) and FF2 (52%) developed to the blastocyst stage at a significantly (P < 0.05) higher rate than those derived from TFF1 (24%) and TFF2 (27%). The proportions of cleaved embryos and blastocysts were significantly (P < 0.05) higher with TRFF1 than with TRCF1 used as nuclear donors (75 vs. 66% and 33 vs. 16%, respectively). Transfer of NT embryos derived from FF2 and TFF2 to recipients resulted in similar pregnancy rates on day 30 (52 and 48%, respectively). However, with TFF2 embryos, the majority of pregnancies (8/11; 73%) was lost in the first and second trimesters of gestation, whereas 4/11 (36%) pregnancies with FF2 embryos were lost during the full period of in vivo development. Of 11 FF2 and 6 TFF2 born calves (25 and 13% of transferred embryos, respectively), 6 and 3 survived including one oversized FF2 calf. After transfer of TRFF1 and TRCF1 NT embryos to recipients, initial pregnancy rate was as a tendency higher in the TRFF1 (49%) than in the TRCF1 group (30%). The majority (14/17) of TRFF1 pregnancies and all TRCF1 pregnancies were lost in the first and second trimester. A high proportion of TRFF1 calves (5/8) showed increased body weights, and only two calves which were also large survived. These findings demonstrate that (i) extended culture associated with transfection and selection procedures may induce changes of donor cells which markedly decrease the efficiency of nuclear transfer and (ii) these changes are not reversed by recloning.  相似文献   

7.
Several studies have shown that both quiescent and proliferating somatic donor cells can be fully reprogrammed after nuclear transfer (NT) and result in viable offspring. So far, however, no comparative study has conclusively demonstrated the relative importance of donor cell cycle stage on nuclear cloning efficiency. Here, we compare two different types of bovine fetal fibroblasts (BFFs) that were synchronized in G(0), G(1), and different phases within G(1). We show that for non-transgenic (non-TG) fibroblasts, serum starvation into G(0) results in a significantly higher percentage of viable calves at term than synchronization in early G(1) or late G(1). For transgenic fibroblasts, however, cells selected in G(1) show significantly higher development to calves at term and higher post-natal survival to weaning than cells in G(0). This suggests that it may be necessary to coordinate donor cell type and cell cycle stage to maximize overall cloning efficiency.  相似文献   

8.
Cho JK  Lee BC  Park JI  Lim JM  Shin SJ  Kim KY  Lee BD  Hwang WS 《Theriogenology》2002,57(7):1819-1828
We conducted this study to examine whether serum starvation in culture contributes to better development of bovine reconstructed oocytes and to evaluate which serum-starved somatic cell is the most effective for cloned calf production. In Experiment 1, donor cells of four different types (cumulus cells, ear fibroblasts, oviduct cells and uterine cells) were either serum-starved or not before fusion with enucleated oocytes, and reconstructed oocytes were further cultured for 168 h. Regardless of serum starvation, cumulus cells or ear fibroblasts yielded higher (P < 0.05) rates of fusion than other cells (62.6-69.3 versus 33.3-38.7%). In the serum-starved group, the first cleavage after reconstruction was significantly increased in cumulus cells and ear fibroblasts, compared with oviduct cells (93.4-94.3 versus 78.8-86.0%), and oocytes reconstructed with either of these yielded more blastocysts than oocytes reconstructed with oviduct or uterine cells (40.6-43.8 versus 20.3-19.0%). We observed a similar pattern in the non-starved group, but we found a significant increase in blastocyst formation was found only in cumulus cells compared with other donor cells (42.6 versus 15.4-27.7%). Overall comparison showed that serum starvation increased the rates of cleavage and development to the blastocyst stage, but we found a statistical significance only in the cleavage rate (80.0 versus 89.5%). In Experiment 2, we transferred randomly selected 59 blastocysts that were developed from oocytes reconstructed with serum-starved cells to 44 synchronised recipients. Of those recipients, 23 became pregnant on Day 60 after transfer (52.3%) and 12 (27.3%) delivered cloned calves. The mean gestation length and birth weight was 275 +/- 8 days and 39.6 +/- 15.6 kg, respectively. Although there was no significant difference among donor cells, blastocysts that were derived from oocytes reconstructed with ear fibroblasts yielded the highest rates of pregnancy (50.0%) and delivery (27.3%). In conclusion, serum starvation is effective for improving preimplantation development of oocytes reconstructed with cumulus or ear fibroblast cells and it may positively influence on obtaining better pregnancy outcome.  相似文献   

9.
10.
To assess sources of variation in nuclear transfer efficiency, bovine fetal fibroblasts (BFF), harvested from six Jersey fetuses, were cultured under various conditions. After transfection, frozen-thawed lung or muscle BFF donor cells were initially cultured in DMEM in 5% CO(2) and air and some were transferred to MEM, with 5% or 20% O(2) or 0.5% or 10% serum and G418 for 2-3 wk. Selected clonal transfected fibroblasts were fused to enucleated oocytes. Fused couplets (n = 4007), activated with ionomycin and 6-dimethylaminopurine, yielded 927 blastocysts, and 650 were transferred to 330 recipients. Fusion rate was influenced by oxygen tension in a fetus-dependent manner (P < 0.001). Blastocyst development was influenced in a number of ways. Hip fibroblast generated more blastocysts when cultured in MEM (P < 0.001). The influence of serum concentration was fetus dependent (P < 0.001) and exposing fibroblast to low oxygen was detrimental to blastocyst development (P < 0.001). Cells from two of the six fetuses produced embryos that maintained pregnancies to term, resulting in eight viable calves. Pregnancy rates 56 days after transfer for the two productive donor fetuses, was at least double that of other recipients and may provide a fitness indicator of BFF cell sources for nuclear transfer. We conclude that a significant component in determining somatic cell nuclear transfer success is the source of the nuclear donor cells.  相似文献   

11.
We have examined the reprogramming ability of donor fibroblast nuclei in various phases of the cell cycle, upon transfer to cytoplasts, using a bovine nuclear transfer (NT) model. Bovine fetal fibroblasts were cultured in reduced serum and conditioned medium to induce quiescence (G0) and treated with nocodazole to induce M phase arrest. Unsynchronized actively dividing cells (control) were mainly in G1. Cells synchronized in G0, M, and G1 phase were transferred to enucleated bovine MII oocytes by direct injection using the Piezo-Drill microinjector. NT oocytes were artificially activated following injection. Cells at the M phase were also transferred to enucleated oocytes after artificial activation. Cells induced into quiescence by serum starvation and unsynchronized donor cells produced the highest rates of development to the morula/blastocyst stage (20% and 18%, respectively). Development to blastocyst was significantly higher in parthenogenetic controls compared to NT embryos. The transfer of M phase nuclei to MII cytoplasts was not associated with high development to the blastocyst stage. Nevertheless, determining the viability of these embryos requires transfer to recipient animals and assessment of in vivo development.  相似文献   

12.
We examined the effect of culture of donor cells on nuclear transfer efficiency using bovine cumulus cells treated with four different conditions: (1). group A, the cells removed from cumulus-oocyte complexes (COC) after aspiration of ovarian follicles; (2). group B, the cells removed from COC after in vitro maturation; (3). group C, the cells cultured in Dulbecco's Modified Eagle's Medium (DMEM) with 10% fetal bovine serum (FBS) for 3 days after some subculture; and (4). group D, the cells cultured in DMEM with 0.5% FBS for an additional 5 days. Analysis of cell cycle using flow cytometry revealed that the relative proportion of donor cells at G0/G1 phase of cell cycle was 89.7% in group A, 89.5% in group B, 76.0% in group C, and 90.6% in group D. The developmental rates to blastocyst stage in groups C (45.3%) and D (46.4%) were significantly (p < 0.05) higher than in groups A (17.5%) and B (31.9%). After transfer of blastocysts produced in each group, nine of 24 recipients became pregnant on day 30. A total of five live calves were obtained from cumulus cells in all groups (group A [n = 1], group B [n = 1], group C [n = 2], and group D [n = 1]).  相似文献   

13.
Cell cycle analysis of cultured porcine mammary cells   总被引:5,自引:0,他引:5  
Prather RS  Boquest AC  Day BN 《Cloning》1999,1(1):17-24
One of the major points of debate in determining the effectiveness of nuclear transfer technology has been the phase of the cell cycle of the donor cell at the time of nuclear transfer. Here, a primary mammary cell line has been isolated and various treatments for synchronization of the cell cycle have been tested. The cells were then simultaneously stained for DNA content and protein content and the percentages of cells in G1, G0, S, and G2 + M were estimated. In the first experiment, cells were either cycling, grown to confluence, or serum-starved for 5 days. Serum starvation increased (p < 0.05) the percentage of cells in G0 compared to confluent or cycling cells from 3% to 8% to 22%. By using forward scatter to determine the size of the cells it was determined that if small cells (7-15 microm) were selected from the serum-starved group 43.9% will be in G(0) as compared to 4.5% of cycling cells and 9.9% of confluent cells. Dimethyl sulfoxide (DMSO) treatment (0%, 0.5%, or 1.0%) for 72 hours (shown to synchronize some cell types in G0) had no effect on the percentage of cells in G0, G1, S, or G2 + M. Treatment with mimosine (0 microM, 0.4 microM, 0.8 microM or 1.2 microM), a compound that should synchronize the cells in G1, increased (p < 0.05) the percentage of cells in G1 from 66.7% (0 microM mimosine) to 79.0% to 82.0%. Finally, treatment with colchicine for 24 hours (shown to synchronize some cell types in G2 + M) increased (p < 0.05) the percentage of cells in G2 + M (0 microM colchicine) from 13.3% to 27.2% to 31.6%. It is concluded that many cell cycle synchronization techniques are effective in porcine mammary cell lines, but none of the techniques are 100% effective. Such results should help elucidate the mechanisms involved in nuclear transfer.  相似文献   

14.
Wang YS  Xiong XR  An ZX  Wang LJ  Liu J  Quan FS  Hua S  Zhang Y 《Theriogenology》2011,75(5):819-825
We previously reported that treatment of both donor cells and early cloned embryos with a combination of 0.01 μM 5-aza-2/-Deoxycytidine (5-aza-dC) and 0.05 μM trichostatin A (TSA) significantly improved development of cloned bovine embryos in vitro. In the present study, we investigated the effect of this combination treatment on the in vivo development potency and postnatal survivability of cloned calves. Blastocysts (77 and 82 blastocysts derived from untreated (control) and treated groups, respectively) were individually transferred to recipient cows. Relative to the control group, the combination treatment of both donor cells and early embryos with 5-aza-dC and TSA dramatically increased the cleavage rate (49.2 vs 63.6%, P < 0.05) at 24 h of culture, and blastocyst development rate on Days 6 and 7 of culture (18.8 vs 33.9% and 27.1 vs 38.5% respectively, P < 0.05). Although pregnancy rate did not differ 40 d after transfer, it was lower in the treated than control group 90 d after transfer (7.8 vs 29.3%, P < 0.05). In the control group, there were three calves born to 77 recipients (only two survived beyond 60 d), whereas in the treated group, 17 calves were born to 82 recipients, and 11 survived beyond 60 d. In conclusion, a combination treatment of donor cells and early cloned embryos with 5-aza-dC and TSA significantly enhanced development of somatic cell cloned bovine embryos in vivo; cloning efficiency (number of surviving calves at 60 d of birth/number of recipient cows) was increased from 2.6 to 13.4%.  相似文献   

15.
Different factors are believed to influence the outcome of nuclear transfer (NT) experiments. Besides the cell cycle stage of both recipient cytoplast and donor karyoplast, the origin of the donor cells (embryonic, fetal, and adult) is of interest. We compared in vitro development of NT embryos derived from small serum-starved (G0) or small cycling (G1) porcine fetal fibroblast cells. Serum starvation did not have a positive effect on cleavage rate or the percentage of embryos that developed to the morula and blastocyst stages. Next, we investigated the development of porcine NT embryos derived from different transgenic clonal cell lines that had originated from the same fetus. When different clonal lines of fetal fibroblasts were fused to enucleated metaphase II oocytes, differences in fusion rates as well as in development to the morula and blastocyst stages were observed (P < 0.05). When oocytes derived from sow ovaries were used as recipient cytoplasts, significantly better cleavage (P = 0.03) and blastocyst formation (P < 0.014) was obtained when compared with oocytes derived from gilts. Our data indicate that not only different cell lines, but also different clones derived from one primary cell line, result in different development when used for NT. In addition, the use of sow oocytes as a cytoplast source also improves the efficiency of NT experiments.  相似文献   

16.
Inefficiency in the production of cloned animals is most likely due to epigenetic reprogramming errors after somatic cell nuclear transfer (SCNT). In order to investigate whether nuclear reprogramming restores cellular age of donor cells after SCNT, we measured telomere length and telomerase activity in cloned pigs and cattle. In normal pigs and cattle, the mean telomere length was decreased with biological aging. In cloned or transgenic cloned piglets, the mean telomere length was elongated compared to nuclear donor fetal fibroblasts and age-matched normal piglets. In cloned cattle, no increases in mean telomere length were observed compared to nuclear donor adult fibroblasts. In terms of telomerase activity, significant activity was observed in nuclear donor cells and normal tissues from adult or new-born pigs and cattle, with relatively higher activity in the porcine tissues compared to the bovine tissues. Cloned calves and piglets showed the same level of telomerase activity as their respective donor cells. In addition, no difference in telomerase activity was observed between normal and transgenic cloned piglets. However, increased telomerase activity was observed in porcine SCNT blastocysts compared to nuclear donor cells and in vitro fertilization (IVF)-derived blastocysts, suggesting that the elongation of telomere lengths observed in cloned piglets could be due to the presence of higher telomerase activity in SCNT blastocysts. In conclusion, gathering from the comparative studies with cattle, we were able to demonstrate that telomere length in cloned piglets was rebuilt or elongated with the use of cultured donor fetal fibroblasts.  相似文献   

17.
Production of cloned cattle from in vitro systems   总被引:6,自引:0,他引:6  
The pregnancy initiation and maintenance rates of nuclear transfer embryos produced from several bovine cell types were measured to determine which cell types produced healthy calves and had growth characteristics that would allow for genetic manipulation. Considerable variability between cell types from one animal and the same cell type from different animals was observed. In general, cultured fetal cells performed better with respect to pregnancy initiation and calving than adult cells with the exception of cumulous cells, which produced the highest overall pregnancy and calving rates. The cell type that combined relatively high pregnancy initiation and calving rates with growth characteristics that allowed for extended proliferation in culture were fetal genital ridge (GR) cells. Cultured GR cells used in nuclear transfer and embryo transfer initiated pregnancies in 40% of recipient heifers (197), and of all recipients that received nuclear transfer embryos, 9% produced live calves. Cultured GR cells doubled as many as 85 times overall and up to 75 times after dilution to single-cell culture. A comparison between transfected and nontransfected cells showed that transfected cells had lower pregnancy initiation (22% versus 32%) and calving (3.4% versus 8.9%) rates.  相似文献   

18.
The aim of the present study was to determine whether porcine preadipocytes can be efficient donor cells for somatic cell nuclear transfer (SCNT) in pigs. Primary culture of porcine preadipocytes was established by de-differentiating mature fat cells taken from an adult pig. The cell cycle of the preadipocytes could be synchronized by serum starvation for 1 day, with a higher efficiency than control fetal fibroblasts. Incidence of premature chromosome condensation following nuclear transfer (NT) of preadipocytes was as high as that observed after NT with fetal fibroblasts. In vitro developmental rate of the NT embryos reconstructed with preadipocyte was equivalent to that of the fetal fibroblast derived embryos. Transfer of 732 NT embryos with preadipocytes to five recipients gave rise to five cloned piglets. These data demonstrate that preadipocyites collected from an adult pig are promising nuclear donor cells for pig cloning.  相似文献   

19.
Cloned calves produced by nuclear transfer from cultured cumulus cells   总被引:3,自引:0,他引:3  
Short-term cultured cumulus cell lines (1-5BCC) derived from 5 individual cows were used in nuclear transfer (NT) and 1188 enucleated bovine oocytes matured in vitro were used as nuclear recipients. A total of 931 (78.4%) cloned embryos were reconstructed, of which 763 (82%) cleaved, 627 (67.3%) developed to 8-cell stage, and 275 (29.5%) reached blastocyst stage. The average cell number of blastocysts was 124±24.5 (n=20). In this study, the effects of donor cell sources, serum starvation of donor cells, time interval from fusion to activation (IFA) were also tested on cloning efficiency. These results showed that blastocyst rates of embryos reconstructed from 5 different individuals cells were significantly different among them (14.1%, 45.2%, 27.3%, 34.3%, vs 1.5%, P<0.05); that serum starvation of donor cells had no effect on blastocyst development rate of NT embryos (47.1% vs 44.4%, P>0.05); and that blastocyst rate (20.3%) of the group with fusion/activation interval of 2-3 h, was significantly lower  相似文献   

20.
To confirm the normality of the Japanese Black calves produced by nuclear transfer, we examined the properties of such calves at parturition and analyzed their karyotypes. Thirty Japanese Black calves were produced by nuclear transfer; 3 of these calves (10.0%) required assisted delivery while 1 calf (3.3%) died soon after birth. Average birth weight was 31.0 +/- 1.8 kg and gestation period was 286.4 +/- 1.0 d (mean +/- SEM). None of the nuclear transfer calves showed external malformations. Within sets of cloned nuclear transfer calves, which were genetically identical, birth weights varied by up to 20.5 kg. Among singleton Japanese Black calves, the mean birth weight of nuclear transfer calves was significantly greater (P < 0.05) than that of calves produced by in vivo-derived embryo transfer. Cytogenetic analysis of 23 Japanese Black nuclear transfer calves revealed the presence of 2N 4N mosaicism in 21 of the nuclear transfer calves. The frequency of occurrence of tetraploidy was unrelated to birth weight. Endoreduplication was observed in 1 Japanese Black nuclear transfer calf, and the frequency of occurrence of the endoreduplication in this calf was 0.5% (1/209). We conclude that there was no external malformation or chromosomal aneuploidy in Japanese Black nuclear transfer calves, but the mean birth weight of nuclear transfer calves was heavier than that of in vivo-derived embryo transfer calves in both sexes, and a variation of birth weight within sets of nuclear transfer calves cloned from the same embryo was recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号