首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zelitch I 《Plant physiology》1978,61(2):236-241
Under conditions where glycolate synthesis was inhibited at least 50% in tobacco (Nicotiana tabacum L.) leaf discs treated with glycidate (2,3-epoxypropionate), the ribulose diphosphate carboxylase activity in extracts and the inhibition of the activity by 100% oxygen were unaffected by the glycidate treatment. [1-14C]Glycidate was readily taken into leaf discs and was bound to leaf proteins, but the binding occurred preferentially with proteins of molecular weight lower than ribulose diphosphate carboxylase. Glycidate added to the isolated enzyme did not inhibit ribulose diphosphate carboxylase activity or affect its inhibition by 100% O2. Thus, glycidate did not inhibit glycolate synthesis by a direct effect on ribulose diphosphate carboxylase/oxygenase.  相似文献   

2.
Tomato fruit (Lycopersicum esculentum Mill) from green, pink, and red stages were assayed for changes in the activity of ribulose diphosphate carboxylase and oxygenase, phosphoenolpyruvate carboxylase, changes in the levels of glycolate and respiratory gas exchange. The ribulose diphosphate carboxylase activity decreased as the fruit ripened. By comparison, the ribulose diphosphate oxygenase activity increased during the transition from the green to the pink stage, and declined afterward. The changes in the endogenous glycolate levels and the respiratory gas exchange, as observed at different stages of ripening, resembled the changes in the ribulose diphosphate oxygenase activity. The utilization of glycolate in further metabolic activity may result in the formation of peroxidases required for the onset of ripening.  相似文献   

3.
It has been shown previously that an increase in ribulose diphosphate carboxylase activity occurs upon brief illumination of leaves of dark-grown Zea mays plants; an increase in ribose 5-phosphate isomerase occurs after prolonged illumination. Both of these responses to illumination are inhibited by chloramphenicol.

The administration of p-chlorophenyldimethylurea, an inhibitor of photosynthesis, to etiolated maize does not affect the normal early rise in ribulose diphosphate carboxylase activity when the leaves are illuminated but does block the increase in ribose 5-phosphate isomerase. This pattern of response suggests that photosynthetic activity is required for the increase in isomerase—perhaps products of photosynthesis induce isomerase synthesis—but that the level of ribulose diphosphate carboxylase is controlled by other processes. Chlorophyll formation (as has been shown by others) is slightly suppressed by the inhibitor; levels of total soluble leaf protein appear to be unaffected.

Salicylaldoxime, which is a more general inhibitor of metabolism than p-chlorophenyldimethylurea, arrests the normally observed increases of ribulose diphosphate carboxylase, ribose 5-phosphate isomerase, and chlorophyll during illumination of dark-grown maize. The level of soluble leaf protein is also lower in leaves treated with this compound.

  相似文献   

4.
Extraction of maize (Zea mays) leaves by progressive grinding under suitably protective conditions yields total carbonic anhydrase activities (4800 units per milligram chlorophyll) comparable to the activity in spinach (Spinacia oleracea) leaves. The total ribulose diphosphate carboxylase activity was also equal to or greater than the best literature values for maize. Of the total leaf carbonic anhydrase, 72.5% on a chlorophyll basis was present in the mesophyll cells and 14.2% in the bundle-sheath cells. The distribution of the total leaf ribulose diphosphate carboxylase between the mesophyll and bundle-sheath cells was 42.0 and 48.7% respectively. There was three times as much total chlorophyll in extracts of the mesophyll cells compared with the bundle-sheath cells of maize. Similar results for the above distribution of the two enzymes were found using a differential grinding technique. The possible function of carbonic anhydrase in photosynthesis is discussed. The equal distribution of ribulose diphosphate carboxylase activity between the mesophyll and bundle-sheath cells casts doubt upon the hypothesis that a rigid biochemical compartmentation exists between these cell types in maize.  相似文献   

5.
Similarities in properties of ribulose diphosphate carboxylase and oxygenase activities further substantiate the hypothesis that the same protein catalyzes both reactions. The Km (ribulose diphosphate) is 0.33 mM for the ribulose diphosphate oxygenase, when assayed in air with an oxygen electrode. Maximum activity is obtained with 10 to 35 mM MgCl2. Higher MgCl2 concentrations are inhibitory, but they shift the pH optimum from 9.3 or 9.4 to 8.7 or 9.0. MnCl2 is an effective cofactor of the oxygenase and some activity is obtained with CoCl2. Both the ribulose diphosphate carboxylase and oxygenase activity of the purified protein from spinach leaves are slowly inactivated by storage at 0 degrees and reactivated in 10 min at 50 degrees, provided both 25 mM MgCl2 and 1 mM dithiothreitol are present. The sulfhydryl groups of the enzyme which react rapidly with 5,5'-dithiobis(2-nitrobenzoic acid) are approximately 4 at pH 7.8 and 11 at pH 9.4. At both pH values ribulose diphosphate prevents two of these sulfhydryl groups from reacting with this reagent. About 50% inhibition of the oxygenase activity at pH 9.0 occurs with 50 mM bicarbonate in the presence of 3 mM ribulose diphosphate, and from variations in these parameters the inhibition is attributed to the CO2 species. The purified enzyme of acrylamide gels prevented the reduction of nitroblue tetrazolium in the presence of the superoxide radical, but the enzyme in solution did not react as a superoxide dismutase.  相似文献   

6.
Ribulose 1,5-diphosphate carboxylase, when activated by preincubation with 1 mm bicarbonate and 10 mm MgCl2 in the absence of ribulose 1,5-diphosphate, remains activated for 20 minutes or longer after reaction is initiated by addition of ribulose diphosphate. If as little as 50 μm 6-phosphogluconate is added during this preincubation period, 5 minutes before the start of the reaction, a further 188% activation is observed. However, addition of 6-phosphogluconate at the same time or later than addition of ribulose diphosphate, or at any time with 50 mm bicarbonate, gives inhibition of the enzyme activity. Possible relevance of these effects in vivo regulatory effects is discussed.  相似文献   

7.
Fructose diphosphatase of Hydrogenomonas eutropha H 16, produced during autotrophic growth, was purified 247-fold from extracts of cells. The molecular weight of the enzyme was estimated to be 170,000. The enzyme showed a pH optimum of 8.5 in both crude extracts and purified preparation. The shape of the pH curve was not changed in the presence of ethylenediaminetetraacetic acid. The enzyme required Mg2+ for activity. The MgCl2 saturation curve was sigmoidal and the degree of positive cooperativity increased at lower fructose diphosphate concentrations. Mn2+ can replace Mg2+, but maximal activity was lower than that observed with Mg2+ and the optimal concentration range was narrow. The fructose diphosphate curve was also sigmoidal. The purified enzyme also hydrolyzed sedoheptulose diphosphate but at a much lower rate than fructose diphosphate. The enzyme was not inhibited by adenosine 5′-monophosphate but was inhibited by ribulose 5-phosphate and adenosine 5′-triphosphate. Adenosine 5′-triphosphate did not affect the degree of cooperativity among the sites for fructose diphosphate. The inhibition by adenosine 5′-triphosphate was mixed and by ribulose 5-phosphate was noncompetitive. An attempt was made to correlate the properties of fructose diphosphatase from H. eutropha with its physiological role during autotrophic growth.  相似文献   

8.
The transfer of dark-grown cultures of Euglena gracilis Klebs strain Z regreening in the light back into darkness resulted in a dramatic increase in ribulose diphosphate carboxylase activity. On a culture volume basis activity increased 4-fold over a 24-hour dark period, although on a protein basis activity declined because of rapid cell division. Mixed assays with light- and dark-growing cell extracts provided no evidence for the removal of an inhibitor of ribulose diphosphate carboxylase upon transferring regreening cells back to darkness. Although ribulose diphosphate carboxylase activity increased over a 24-hour dark period, there was no concomitant increase in the potential of the cells for photosynthetic carbon dioxide fixation.  相似文献   

9.
Ribulose diphosphate carboxylase from autotrophic microorganisms   总被引:15,自引:9,他引:6       下载免费PDF全文
Thiobacillus denitrificans was grown anaerobically with nitrate as an acceptor in both sterile and nonsterile media. Ribulose diphosphate carboxylase was stable throughout the exponential growth phase and declined slowly only after cells reached the stationary phase. Reversible inactivation of the carboxylase occurred in extracts as a result of bicarbonate omission. The enzyme was purified 32-fold with excellent recovery of a preparation which was 50 to 60% pure by the criterion of polyacrylamide gel electrophoresis. This purified preparation catalyzed the fixation of 1.25 mumoles of CO(2) per min per mg of protein at pH 8.1 and 30 C, and the molecular weight of ribulose diphosphate carboxylase was approximately 350,000 daltons. A striking biphasic time course of CO(2) fixation that was independent of protein and ribulose diphosphate concentration was observed. The optimal pH of the enzyme assay was fairly broad, ranging from 7 to 8.2. Kinetic dependence upon bicarbonate, ribulose diphosphate, and Mg(2+) was characterized and indicated that bicarbonate and Mg(2+) must combine with enzyme prior to addition of ribulose diphosphate. Antiserum to ribulose diphosphate carboxylase from Hydrogenomonas eutropha was only slightly inhibitory when added to the enzyme from T. denitrificans, and the mixture did not precipitate. Cyanide (4 x 10(-5)m) gave 61% inhibition of the enzyme from T. denitrificans. Ribulose diphosphate carboxylase in extracts of H. eutropha, H. facilis, Chromatium D, Rhodospirillum rubrum, and Chlorella pyrenoidosa were also inhibited to varying extents by cyanide and antiserum to the H. eutropha enzyme.  相似文献   

10.
Preparations of heterocysts of Anabaena cylindrica Lemm. had 7- to 8-fold higher activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, 2-fold more hexokinase activity, and 0.02 to 0.06 times as much ribulose diphosphate carboxylase and glyceraldehyde 3-phosphate dehydrogenase activities as did whole filaments per milligram soluble protein in cell-free extracts. Time courses of solubilization of glucose 6-phosphate dehydrogenase activity indicated that heterocysts contain 74 to 80% of the total activity of this enzyme in filaments.  相似文献   

11.
The synthesis of chlorophyll and ribulose diphosphate carboxylase as well as the development of Hill reaction activity were followed in expanding Populus deltoides leaves and related to photosynthetic patterns. Total chlorophyll, which was not correlated with photosynthetic rate in expanding leaves, decreased slightly with age in very young leaves, due to a decrease in chlorophyll b, but then increased linearly. The ratio of chlorophyll a to b, which rose sharply in young leaves, was highly correlated with the onset of net photosynthesis. Hill reaction activity was very low in young leaves and did not increase significantly until leaves were about half expanded. Ribulose diphosphate carboxylase activity increased in a sigmoid fashion with leaf ontogenesis and closely paralleled development of the photosynthetic system. The study demonstrates the importance of chlorophyll a and Calvin cycle enzyme synthesis to photosynthetic development in expanding leaves.  相似文献   

12.
The stimulation or inhibition of ribulose diphosphate oxygenase by a variety of compounds is compared with the reported effects on these compounds on the ribulose diphosphate carboxylase activity. A possible transition state analog of ribulose diphosphate, 2-carboxyribitol 1, 5-diphosphate, at a molar ratio of inhibitor to enzyme of 10 to 1, irreversibly inactivates the oxygenase and carboxylase activities. This is consistent with the hypothesis that there may be a single active site for both the carboxylase and oxygenase activities. Several compounds of the reductive pentose photosynthetic carbon cycle act as effectors of the ribulose diphosphate oxygenase in a manner complementary to their reported effect upon the carboxylase. Ribose 5-phosphate inhibits the oxygenase with an apparent Ki of 1.8 mM, but it is reported to activate the carboxylase; fructose 6-phosphate and glucose 6-phosphate act similarly but are less effective than ribose 5-phosphate. Fructose 1. 6-diphosphate stimulates the oxygenase at low magnesium ion concentrations. The stimulatory effect of 6-phosphogluconate on the oxygenase is associated with a 3-fold reduction of the Km (Mg2+). ATP inhibits the oxygenase but has been reported to stimulate the carboxylase; pyrophosphate acts in an opposite manner. From these results it appears that the ratio of carboxylase to oxygenase activity may be a variable factor with predictable subsequent alteration in the ratio between photosynthetic CO2 fixation and photorespiration.  相似文献   

13.
A high-affinity form of ribulose diphosphate carboxylase, observed transiently in spinach-leaf extracts soon after extraction, was inhibited by O2 competitively with respect to CO2. Analogously, the ribulose diphosphate oxygenase activity for this form was inhibited by CO2, competitively with respect to O2. For each gas, the Km for the reaction in which it was a substrate was similar to its Ki for the reaction it inhibited. The Arrhenius activation energy for the oxygenase reaction was 1.5 times that of the carboxylase. These characteristics are consistent with ribulose diphosphate oxygenase being the enzymatic reaction responsible for synthesizing the substrate for photorespiration and with the concept that the balance between photosynthesis and photorespiration of leaves is a reflection of the ratio between the two activities of this bi-functional enzyme.  相似文献   

14.
Chloroplasts were separated from Euglena gracilis by zonal centrifugation at low speed in density gradients of Ficoll or dextran. The chloroplasts were intact by the criteria of ultrastructure and their content of ribulose diphosphate carboxylase and soluble protein. The chloroplasts also contained ribosomes and ribosomal RNA uncontaminated by the corresponding cytoplasmic particles.  相似文献   

15.
The effect of SO32? on the activity of PEP-carboxylase and on subsequent malate formation has been studied in leaf extracts of Zea mays. PEP-carboxylase was assayed by incorporation of H14CO3 - into oxaloacetate dinitrophenylhydrazone and by a spectrophotometric method. In contrast to ribulose diphosphate carboxylase, PEP-carboxylase was not inhibited by 10 mM SO32? with respect to PEP. As was the case with ribulose diphosphate carboxylase, the activity of PEP-carboxylase was inhibited non-competitively with respect to Mg2+. However, the Ki value (84.5 mM) was found to be very high. With respect to HCO3?, like ribulose diphosphate carboxylase, PEP-carboxylase was inhibited competitively, but the Ki value (27 mM SO32?) increased by about the same factor (× 9) as the Km, (0·5 mM HCO3?) is decreased. This indicates that the replacement of HCO3? by SO32?, common to both enzymes, is facilitated by decreasing the affinity of the enzyme for HCO3?. At substrate saturating conditions malate formation by the combined action of PEP-carboxylase and endogenous NADH-dependent malate dehydrogenase in leaf extracts was not inhibited by 10 mM SO32?. Although the malate dehydrogenase is inhibited at this SO32? concentration to about 85%, malate formation is unaffected, as PEP-carboxylase is the rate limiting step its turnover rate being only about 8% of NADH-dependent malate dehydrogenase.  相似文献   

16.
Spinach leaf phosphoenolpyruvate carboxylase has been purified to homogeneity using salt fractionatjon, chromatography, and immunologie procedures to remove contaminating ribulose diphosphate carboxylase. From gel filtration and isoelectric focusing, the molecular weight (~560,000) and isoelectric point (pI = 4.9) are indistinguishable from those of ribulose diphosphate carboxylase. The subunit molecular weight of phosphoenolpyruvate carboxylase (130,000) suggests that the native enzyme is a tetramer.Kinetic studies using Mg2+ or Mn2+ as the activator indicate that the divalent cation lowers the Km of the substrate phosphoenolpyruvate by an order of magnitude and conversely, that the presence of the substrate similarly lowers the Km of the metal ion, suggesting an enzyme-metal-substrate bridge complex. Three analogs of phosphoenolpyruvate, lphospholactate, d-phospholactate, and phosphoglycolate are potent competitive inhibitors. The inhibitor constant (Ki) of l-phospholactate (2 μm) is 49-fold lower with Mn2+ as the activator than with Mg2+. An analysis of the competitive inhibition by portions of the l-phospholactate molecule (i.e., l-lactate, methyl phosphate, and phosphite) indicates this 49-fold lowering is due to increased interaction of the phosphoryl group and, to a lesser extent, of the carboxyl and C-O-P bridge oxygen of l-phospholactate with the enzyme metal complex. The results provide indirect evidence for phosphoryl coordination by the enzyme-bound divalent cation.  相似文献   

17.
Whole filaments of autotrophically grown Anabaena cylindrica and heterocysts isolated from them will assimilate and metabolise exogenous glucose. Radiorespirometric experiments suggest the operation of the pentose phosphate pathway. Glucose-6-phosphate and 6-phosphogluconate dehydrogenase are present in heterocysts at 6–8 times the levels found in vegetative cells whereas enzymes of the reductive pentose phosphate and glycolytic pathways are barely or not detectable. Glucose-6-phosphate dehydrogenase in vegetative cells, but not in heterocysts is subject to inhibition by ribulose diphosphate.  相似文献   

18.
Effects of calcium on photosynthesis in sugar beets (Beta vulgaris L. cv. F58-554H1) were studied by inducing calcium deficiency and determining changes in CO2 uptake by attached leaves, electron transport, and photophosphorylation by isolated chloroplasts, and CO2 assimilation by ribulose diphosphate carboxylase extracts. Calcium deficiency had no significant effect on leaf CO2 uptake, photoreduction of ferricyanide, cyclic or noncyclic ATP formation of isolated chloroplasts, or on ribulose diphosphate carboxylase CO2 assimilation, when the rates were expressed per unit chlorophyll. When expressed per unit leaf area CO2 uptake increased by about 15% in low calcium leaves. The most noticeable effect of calcium deficiency was reduction in leaf area: low calcium had no effect on dark respiratory CO2 evolution, on leaf diffusion resistance, or on mesophyll resistance to CO2. We concluded that only small amounts of calcium are required for normal photosynthetic activity of sugar beet leaves.  相似文献   

19.
Peter Rowell  Roy Powls 《BBA》1976,423(1):65-79
The partial reactions of photosynthesis shown by strain F208, a non-photosynthetic mutant strain of Scenedesmus obliquus, have been compared with those performed by other mutant strains which lacked; Photosystem II activity (strains 11 and F131), cytochrome f (strain 50), P-700 and cytochrome f (strain F119), and P-700 (strains F139 and 199). In this respect the properties of strain F208 were those that would be expected if Photosystem II activity and cytochrome f were not present in this strain. Examination of the composition of strain F208 has shown the absence of cytochrome f in both the soluble and the membrane-bound form. The considerably lower level of plastoquinone compared to that found in the wild type is characteristic of the strains which lack Photosystem II activities.Fraction 1 protein could not be detected in extracts of strain F208 by sedimentation velocity experiments in the ultracentrifuge, and only 7% of the wild type ribulose diphosphate carboxylase activity was found after chromatography of these extracts on DEAE-cellulose.The properties of strain F208 are compared with those of the ac-20 and cr-1 strains of Chlamydomonas rheinhardi, both of which have a deficiency of ribulose diphosphate carboxylase which is considered to result from a deficiency of chloroplast ribosomes. Strain F208 resembles these strains in its abnormal chloroplast ultrastructure and its decreased levels of the RNA forms derived from the chloroplast ribosomes when compared with the wild type.Chloroplast fragments isolated from strains of S. obliquus which lacked cytochrome f (strains 50 and F208) were able to use diaminodurene and ascorbate as an electron donor to Photosystem I. Since this reaction was inhibited by mercuric salts it would appear that plastocyanin, but not cytochrome f, was involved in this electron transfer.  相似文献   

20.
The activities of certain enzymes related to the carbon assimilation pathway in whole leaves, mesophyll cell extracts, and bundle sheath extracts of the C4 plant Panicum miliaceum have been measured and compared on a chlorophyll basis. Enzymes of the C4 dicarboxylic acid pathway—phosphoenolpyruvate carboxylase and NADP-malic dehydrogenase—were localized in mesophyll cells. Carbonic anhydrase was also localized in mesophyll cell extracts. Ribose 5-phosphate isomerase, ribulose 5-phosphate kinase, and ribulose diphosphate carboxylase—enzymes of the reductive pentose phosphate pathway—were predominantly localized in bundle sheath extracts. High activities of aspartate and alanine transaminases and glyceraldehyde-3-P dehydrogenase were found about equally distributed between the photosynthetic cell types. P. miliaceum had low malic enzyme activity in both mesophyll and bundle sheath extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号