首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective arterial elastance(E(A)) is a measure of the net arterial load imposed on the heart that integrates the effects of heart rate(HR), peripheral vascular resistance(PVR), and total arterial compliance(TAC) and is a modulator of cardiac performance. To what extent the change in E(A) during exercise impacts on cardiac performance and aerobic capacity is unknown. We examined E(A) and its relationship with cardiovascular performance in 352 healthy subjects. Subjects underwent rest and exercise gated scans to measure cardiac volumes and to derive E(A)[end-systolic pressure/stroke volume index(SV)], PVR[MAP/(SV*HR)], and TAC(SV/pulse pressure). E(A) varied with exercise intensity: the ΔE(A) between rest and peak exercise along with its determinants, differed among individuals and ranged from -44% to +149%, and was independent of age and sex. Individuals were separated into 3 groups based on their ΔE(A)I. Individuals with the largest increase in ΔE(A)(group 3;ΔE(A)≥0.98 mmHg.m(2)/ml) had the smallest reduction in PVR, the greatest reduction in TAC and a similar increase in HR vs. group 1(ΔE(A)<0.22 mmHg.m(2)/ml). Furthermore, group 3 had a reduction in end-diastolic volume, and a blunted increase in SV(80%), and cardiac output(27%), during exercise vs. group 1. Despite limitations in the Frank-Starling mechanism and cardiac function, peak aerobic capacity did not differ by group because arterial-venous oxygen difference was greater in group 3 vs. 1. Thus the change in arterial load during exercise has important effects on the Frank-Starling mechanism and cardiac performance but not on exercise capacity. These findings provide interesting insights into the dynamic cardiovascular alterations during exercise.  相似文献   

2.
Frequency potentiation of contractile function is a major mechanism of the increase in myocardial performance during exercise. In heart failure (HF), this positive force-frequency relation is impaired, and the abnormal left ventricular (LV)-arterial coupling is exacerbated by tachycardia. A myofilament Ca(2+) sensitizer, levosimendan, has been shown to improve exercise tolerance in HF. This may be due to its beneficial actions on the force-frequency relation and LV-arterial coupling (end-systolic elastance/arterial elastance, E(ES)/E(A)). We assessed the effects of therapeutic doses of levosimendan on the force-frequency relation and E(ES)/E(A) in nine conscious dogs after pacing-induced HF using pressure-volume analysis. Before HF, pacing tachycardia increased E(ES), shortened τ, and did not impair E(ES)/E(A) and mechanical efficiency (stroke work/pressure-volume area, SW/PVA). In contrast, after HF, pacing at 140, 160, 180, and 200 beat/min (bpm) produced smaller a increase of E(ES) or less shortening of τ, whereas E(ES)/E(A) (from 0.56 at baseline to 0.42 at 200 bpm) and SW/PVA (from 0.52 at baseline to 0.43 at 200 bpm) progressively decreased. With levosimendan, basal E(ES) increased 27% (6.2 mmHg/ml), τ decreased 11% (40.8 ms), E(ES)/E(A) increased 34% (0.75), and SW/PVA improved by 15% (0.60). During tachycardia, E(ES) further increased by 23%, 37%, 68%, and 89%; τ decreased by 9%, 12%, 15%, and 17%; and E(ES)/E(A) was augmented by 11%, 16%, 31%, and 33%, incrementally, with pacing rate. SW/PVA was improved (0.61 to 0.64). In conclusion, in HF, treatment with levosimendan restores the normal positive LV systolic and diastolic force-frequency relation and prevents tachycardia-induced adverse effect on LV-arterial coupling and mechanical efficiency.  相似文献   

3.
Acute elevation of circulating lipids, such as the postprandial state, contributes to increased cardiovascular risk. However, the effect of acutely elevated triglycerides on arterial and left ventricular function is not completely understood. We aimed to assess whether an acute increase in triglycerides affects ventricular-vascular interaction. Fifteen healthy men (age, 49 ± 8 yr) underwent blinded, randomized infusion of saline and intravenous fat emulsion to acutely raise plasma triglycerides. All subjects underwent both randomization trials, in random order on two separate days. Ventricular-vascular interaction measures were recorded by tonometry (central blood pressure) and echocardiography (left ventricular volumes, strain, and strain rate) at baseline and after 1 h infusion. Net ventricular-vascular interaction was defined by the effective arterial elastance (E(A))-to-left ventricular end-systolic elastance (E(LV)) ratio (E(A)/E(LV)). When compared with saline, the infusion of intravenous fat emulsion increased triglycerides and free fatty acids (ΔP < 0.001 for both) and improved left ventricular contractility (ΔE(LV), end-systolic volume and strain rate; P < 0.05 for all). However, arterial function was unchanged (ΔE(A), brachial and central blood pressure; P > 0.05 for all). Overall, E(A)/E(LV) was decreased by an infusion of intravenous fat emulsion (P = 0.004) but not saline (P > 0.05, P = 0.001 for Δ between trials). We conclude that intravenous fat emulsion and acute elevation of blood lipids (including triglycerides and free fatty acids) alter ventricular-vascular interaction by increasing left ventricular contractility without affecting arterial load. These findings may have implications for cardiovascular responses to parenteral nutrition.  相似文献   

4.
In the recently published clinical study [Use of Nitroprusside in Left Ventricular Dysfunction and Obstructive Aortic Valve Disease (UNLOAD)], sodium nitroprusside (SNP) improved cardiac function in patients with severe aortic stenosis (AS) and left ventricular (LV) systolic dysfunction. We explored the possible mechanisms of these findings using a series of numerical simulations. A closed-loop lumped parameters model that consists of 24 differential equations relating pressure and flow throughout the circulation was used to analyze the effects of varying hemodynamic conditions in AS. Hemodynamic data from UNLOAD study subjects were used to construct the initial simulation. Systemic vascular resistance (SVR), heart rate, and aortic valve area were directly entered into the model while end-systolic and end-diastolic pressure-volume (P-V) relationships were adjusted using previously published data to match modeled and observed end-systolic and end-diastolic pressures and volumes. Initial simulation of SNP treatment by a reduction of SVR was not adequate. To obtain realistic model hemodynamics that reliably reproduce SNP treatment effects, we performed a series of simulations while simultaneously changing end-systolic elastance (E(es)), end-systolic volume at zero pressure (V(0)), and diastolic P-V shift. Our data indicate that either an E(es) increase or V(0) decrease is necessary to obtain realistic model hemodynamics. In five patients, we corroborated our findings by using the model to duplicate individual P-V loops obtained before and during SNP treatment. In conclusion, using a numerical model, we identified ventricular function parameters that are responsible for improved hemodynamics during SNP infusion in AS with LV dysfunction.  相似文献   

5.
The purpose of this echocardiography study was to measure peak coronary blood flow velocity (CBV(peak)) and left ventricular function (via tissue Doppler imaging) during separate and combined bouts of cold air inhalation (-14 ± 3°C) and isometric handgrip (30% maximum voluntary contraction). Thirteen young adults and thirteen older adults volunteered to participate in this study and underwent echocardiographic examination in the left lateral position. Cold air inhalation was 5 min in duration, and isometric handgrip (grip protocol) was 2 min in duration; a combined stimulus (cold + grip protocol) and a cold pressor test (hand in 1°C water) were also performed. Heart rate, blood pressure, O(2) saturation, and inspired air temperature were monitored on a beat-by-beat basis. The rate-pressure product (RPP) was used as an index of myocardial O(2) demand, and CBV(peak) was used as an index of myocardial O(2) supply. The RPP response to the grip protocol was significantly blunted in older subjects (Δ1,964 ± 396 beats·min(-1)·mmHg) compared with young subjects (Δ3,898 ± 452 beats·min(-1)·mmHg), and the change in CBV(peak) was also blunted (Δ6.3 ± 1.2 vs. 11.2 ± 2.0 cm/s). Paired t-tests showed that older subjects had a greater change in the RPP during the cold + grip protocol [Δ2,697 ± 391 beats·min(-1)·mmHg compared with the grip protocol alone (Δ2,115 ± 375 beats·min(-1)·mmHg)]. An accentuated RPP response to the cold + grip protocol (compared with the grip protocol alone) without a concomitant increase in CBV(peak) may suggest a dissociation between the O(2) supply and demand in the coronary circulation. In conclusion, older adults have blunted coronary blood flow responses to isometric exercise.  相似文献   

6.
Effective arterial elastance (E(a)), defined as the ratio of left ventricular (LV) end-systolic pressure and stroke volume, lumps the steady and pulsatile components of the arterial load in a concise way. Combined with E(max), the slope of the LV end-systolic pressure-volume relation, E(a)/E(max) has been used to assess heart-arterial coupling. A mathematical heart-arterial interaction model was used to study the effects of changes in peripheral resistance (R; 0.6-1.8 mmHg x ml(-1) x s) and total arterial compliance (C; 0.5-2.0 ml/mmHg) covering the human pathophysiological range. E(a), E(a)/E(max,) LV stroke work, and hydraulic power were calculated for all conditions. Multiple-linear regression analysis revealed a linear relation between E(a), R/T (where T is cycle length), and 1/C: E(a) = -0.13 + 1.02R/T + 0.31/C, indicating that R/T contributes about three times more to E(a) than arterial stiffness (1/C). It is demonstrated that different pathophysiological combinations of R and C may lead to the same E(a) and E(a)/E(max) but can result in differences of 10% in stroke work and 50% in maximal power.  相似文献   

7.
We determined the acute effects of methoxamine, a specific alpha1-selective adrenoceptor agonist, on the left ventricular-arterial coupling in streptozotocin (STZ)-diabetic rats, using the end-systolic pressure-stroke volume relationships. Rats given STZ 65 mg x kg(-1) iv (n = 8) were compared with untreated age-matched controls (n = 8). A high-fidelity pressure sensor and an electromagnetic flow probe measured left ventricular (LV) pressure and ascending aortic flow, respectively. Both LV end-systolic elastance E(LV,ES) and effective arterial elastance Ea were estimated from the pressure-ejected volume loop. The optimal afterload Q(load) determined by the ratio of Ea to E(LV,ES) was used to measure the optimality of energy transmission from the left ventricle to the arterial system. In comparison with controls, diabetic rats had decreased LV end-systolic elastance E(LV,ES), at 513 +/- 30 vs. 613 +/- 29 mmHg x mL(-1), decreased effective arterial elastance Ea, at 296 +/- 20 vs. 572 +/- 48 mmHg x mL(-1), and decreased optimal afterload Q(load), at 0.938 +/- 0.007 vs. 0.985 +/- 0.009. Methoxamine administration to STZ-diabetic rats significantly increased LV end-systolic elastance E(LV,ES), from 513 +/- 30 to 602 +/- 38 mmHg x mL(-1), and effective arterial elastance Ea, from 296 +/- 20 to 371 +/- 28 mmHg x mL(-1), but did not change optimal afterload Q(load). We conclude that diabetes worsens not only the contractile function of the left ventricle, but also the matching condition for the left ventricular-arterial coupling. In STZ-diabetic rats, administration of methoxamine improves the contractile status of the ventricle and arteries, but not the optimality of energy transmission from the left ventricle to the arterial system.  相似文献   

8.
The ventricular response to passive heat stress has predominantly been studied in the supine position. It is presently unclear how acute changes in venous return influence ventricular function during heat stress. To address this question, left ventricular (LV) systolic and diastolic function were studied in 17 healthy men (24.3 ± 4.0 yr; mean ± SD), using two-dimensional transthoracic echocardiography with Doppler ultrasound, during tilt-table positioning (supine, 30° head-up tilt, and 30° head-down tilt), under normothermic and passive heat stress (core temperature 0.8 ± 0.1°C above baseline) conditions. The supine heat stress LV volumetric and functional response was consistent with previous reports. Combining head-up tilt with heat stress reduced end-diastolic (25.2 ± 4.1%) and end-systolic (65.4 ± 10.5%) volume from baseline, whereas heart rate (37.7 ± 2.0%), ejection fraction (9.4 ± 2.4%), and LV elastance (37.7 ± 3.6%) increased, and stroke volume (-28.6 ± 9.4%) and early diastolic inflow (-17.5 ± 6.5%) and annular tissue (-35.6 ± 7.0%) velocities were reduced. Combining head-down tilt with heat stress restored end-diastolic volume, whereas LV elastance (16.8 ± 3.2%), ejection fraction (7.2 ± 2.1%), and systolic annular tissue velocities (22.4 ± 5.0%) remained elevated above baseline, and end-systolic volume was reduced (-15.3 ± 3.9%). Stroke volume and the early and late diastolic inflow and annular tissue velocities were unchanged from baseline. This investigation extends previous work by demonstrating increased LV systolic function with heat stress, under varied levels of venous return, and highlights the preload dependency of early diastolic function during passive heat stress.  相似文献   

9.
Limb venous compliance decreases with advancing age, even in healthy humans. To test the hypothesis that adrenergic mechanisms contribute to age-associated reductions in limb venous compliance, we measured calf venous compliance before and during acute systemic α- and β-adrenergic blockade in eight young (27 ± 1 yr old, mean ± SE) and eight older healthy men (67 ± 2 yr old). Calf venous compliance was determined in supine subjects by inflating a thigh-collecting cuff to 60 mmHg for 8 min and then decreasing it (1 mmHg/s) to 0 mmHg while calf volume was indexed with a strain gauge. The slope (·10?3) of the pressure-compliance relation (compliance= β? + 2·β?·cuff pressure), which is the first derivative of the quadratic pressure-volume relation [(Δlimb volume) = β?+ β?·(cuff pressure) + β?·(cuff pressure)2] during reductions in cuff pressure, was used to quantify calf venous compliance. Calf venous compliance was ~30% lower (P < 0.01) in older compared with young men before adrenergic blockade. In response to adrenergic blockade calf venous compliance did not increase in young (-2.62 ± 0.14 and -2.29 ± 0.18 ml·dl?1·mmHg?1, before and during blockade, respectively) or older men (-1.78 ± 0.27 and -1.68 ± 0.21 ml·dl?1 ·mmHg?1). Moreover, during adrenergic blockade differences in calf venous compliance between young and older men observed before adrenergic blockade persisted. Collectively, these data strongly suggest that adrenergic mechanisms neither directly restrain calf venous compliance in young or older men nor do they contribute to age-associated reductions in calf venous compliance in healthy men.  相似文献   

10.
To better understand the mechanisms contributing to improved exercise capacity with cardiac resynchronization therapy (CRT), we studied the effects of 6 mo of CRT on pulmonary O(2) uptake (Vo(2)) kinetics, exercise left ventricular (LV) function, and peak Vo(2) in 12 subjects (age: 56 ± 15 yr, peak Vo(2): 12.9 ± 3.2 ml·kg(-1)·min(-1), ejection fraction: 18 ± 3%) with heart failure. We hypothesized that CRT would speed Vo(2) kinetics due to an increase in stroke volume secondary to a reduction in LV end-systolic volume (ESV) and that the increase in peak Vo(2) would be related to an increase in cardiac output reserve. We found that Vo(2) kinetics were faster during the transition to moderate-intensity exercise after CRT (pre-CRT: 69 ± 21 s vs. post-CRT: 54 ± 17 s, P < 0.05). During moderate-intensity exercise, LV ESV reserve (exercise - resting) increased 9 ± 7 ml (vs. a 3 ± 9-ml decrease pre-CRT, P < 0.05), and steady-state stroke volume increased (pre-CRT: 42 ± 8 ml vs. post-CRT: 61 ± 12 ml, P < 0.05). LV end-diastolic volume did not change from rest to steady-state exercise post-CRT (P > 0.05). CRT improved heart rate, measured as a lower resting and steady-state exercise heart rate and as faster heart rate kinetics after CRT (pre-CRT: 89 ± 12 s vs. post-CRT: 69 ± 21 s, P < 0.05). For peak exercise, cardiac output reserve increased significantly post-CRT and was 22% higher at peak exercise post-CRT (both P < 0.05). The increase in cardiac output was due to both a significant increase in peak and reserve stroke volume and to a nonsignificant increase in heart rate reserve. Similar patterns in LV volumes as moderate-intensity exercise were observed at peak exercise. Cardiac output reserve was related to peak Vo(2) (r = 0.48, P < 0.05). These findings demonstrate the chronic CRT-mediated cardiac factors that contribute, in part, to the speeding in Vo(2) kinetics and increase in peak Vo(2) in clinically stable heart failure patients.  相似文献   

11.
12.
We studied the acute effect of high-intensity interval exercise on biventricular function using cardiac magnetic resonance imaging in nine patients [age: 49 ± 16 yr; left ventricular (LV) ejection fraction (EF): 35.8 ± 7.2%] with nonischemic mild heart failure (HF). We hypothesized that a significant impairment in the immediate postexercise end-systolic volume (ESV) and end-diastolic volume (EDV) would contribute to a reduction in EF. We found that immediately following acute high-intensity interval exercise, LV ESV decreased by 6% and LV systolic annular velocity increased by 21% (both P < 0.05). Thirty minutes following exercise (+30 min), there was an absolute increase in LV EF of 2.4% (P < 0.05). Measures of preload, left atrial volume and LV EDV, were reduced immediately following exercise. Similar responses were observed for right ventricular volumes. Early filling velocity, filling rate, and diastolic annular velocity remained unchanged, while LV untwisting rate increased 24% immediately following exercise (P < 0.05) and remained 18% above baseline at +30 min (P < 0.05). The major novel findings of this investigation are 1) that acute high-intensity interval exercise decreases the immediate postexercise LV ESV and increases LV EF at +30 min in patients with mild HF, and this is associated with a reduction in LV afterload and maintenance of contractility, and 2) that despite a reduction in left atrial volume and LV EDV immediately postexercise, diastolic function is preserved and may be modulated by enhanced LV peak untwisting rate. Acute high-intensity interval exercise does not impair postexercise biventricular function in patients with nonischemic mild HF.  相似文献   

13.
To determine whether endurance exercise training can alter the beta-adrenergic-stimulated inotropic response in older women, we studied 10 postmenopausal healthy women (65.4 +/- 0.9 yr old) who exercised for 11 mo. Left ventricular (LV) function was evaluated with two-dimensional echocardiography during infusion of isoproterenol after atropine. Maximal O(2) consumption increased 23% in response to training (from 1.35 +/- 0.06 to 1.66 +/- 0.07 l/min; P = 0.004). Training had no effect on baseline LV function, end-diastolic diameter, LV wall thickness, or LV mass. The increase in LV systolic function in response to isoproterenol was unaffected by training. Furthermore, neither the systolic shortening-to-end-systolic wall stress relationship nor the end-systolic wall stress-to-end-systolic diameter relationship during isoproterenol infusion changed with training. We conclude that older postmenopausal women can increase their maximal O(2) consumption with exercise training without eccentric LV hypertrophy or enhancement of beta-adrenergic-mediated LV contractile function. These observations provide an explanation for the finding that maximal cardiac output and stroke volume are not increased in older women in response to training.  相似文献   

14.
Mice are a widely used animal model for investigating cardiovascular disease. Novel technologies have been used to quantify left ventricular function in this species, but techniques appropriate for determining right ventricular (RV) function are less well demonstrated. Detecting RV dysfunction is critical to assessing the progression of pulmonary vascular diseases such as pulmonary hypertension. We used an admittance catheter to measure pressure-volume loops in anesthetized, open-chested mice before and during vena cava occlusion. Mice exposed to chronic hypoxia for 10 days, which causes hypoxia-induced pulmonary hypertension (HPH), were compared with control (CTL) mice. HPH resulted in a 27.9% increase in RV mass (P < 0.005), a 67.5% increase in RV systolic pressure (P < 0.005), and a 61.2% decrease in cardiac output (P < 0.05). Preload recruitable stroke work (PRSW) and slope of the maximum derivative of pressure (dP/dt(max))-end-diastolic volume (EDV) relationship increased with HPH (P < 0.05). Although HPH increased effective arterial elastance (E(a)) over fivefold (from 2.7 ± 1.2 to 16.4 ± 2.5 mmHg/μl), only a mild increase in the ventricular end-systolic elastance (E(es)) was observed. As a result, a dramatic decrease in the efficiency of ventricular-vascular coupling occurred (E(es)/E(a) decreased from 0.71 ± 0.27 to 0.35 ± 0.17; P < 0.005). Changes in cardiac reserve were evaluated by dobutamine infusion. In CTL mice, dobutamine significantly enhanced E(es) and dP/dt(max)-EDV but also increased E(a), causing a decrease in E(es)/E(a). In HPH mice, slight but nonsignificant decreases in E(es), PRSW, dP/dt(max)-EDV, and E(a) were observed. Thus 10 days of HPH resulted in RV hypertrophy, ventricular-vascular decoupling, and a mild decrease in RV contractile reserve. This study demonstrates the feasibility of obtaining RV pressure-volume measurements in mice. These measurements provide insight into ventricular-vascular interactions healthy and diseased states.  相似文献   

15.
5'-AMP-activated protein kinase (AMPK) has been proposed to be a pivotal factor in cellular responses to both acute exercise and exercise training. To investigate whether protein levels and gene expression of catalytic (alpha(1), alpha(2)) and regulatory (beta(1), beta(2), gamma(1), gamma(2), gamma(3)) AMPK subunits and exercise-induced AMPK activity are influenced by exercise training status, muscle biopsies were obtained from seven endurance exercise-trained and seven sedentary young healthy men. The alpha(1)- and alpha(2)-AMPK mRNA contents in trained subjects were both 117 +/- 2% of that in sedentary subjects (not significant), whereas mRNA for gamma(3) was 61 +/- 1% of that in sedentary subjects (not significant). The level of alpha(1)-AMPK protein in trained subjects was 185 +/- 34% of that in sedentary subjects (P < 0.05), whereas the levels of the remaining subunits (alpha(2), beta(1), beta(2), gamma(1), gamma(2), gamma(3)) were similar in trained and sedentary subjects. At the end of 20 min of cycle exercise at 80% of peak O(2) uptake, the increase in phosphorylation of alpha-AMPK (Thr(172)) was blunted in the trained group (138 +/- 38% above rest) compared with the sedentary group (353 +/- 63% above rest) (P < 0.05). Acetyl CoA-carboxylase beta-phosphorylation (Ser(221)), which is a marker for in vivo AMPK activity, was increased by exercise in both groups but to a lower level in trained subjects (32 +/- 5 arbitrary units) than in sedentary controls (45 +/- 1 arbitrary units) (P < 0.01). In conclusion, trained human skeletal muscle has increased alpha(1)-AMPK protein levels and blunted AMPK activation during exercise.  相似文献   

16.
Beta-adrenergic blockade was used to determine whether the exercise training-induced adaptations of immune response to viral infection were mediated by catecholamines in young and old mice. Young (2 mo) and older (16 mo) male BALB/c mice were randomly assigned to an exercise or control group, and half of the mice in each group received the beta-adrenergic receptor antagonist nadolol. After 8 wk of moderate exercise training, mice were challenged with herpes simplex virus (HSV) 24 h postexercise. The results showed that exercise treatment increased anti-HSV IgM antibody, enhanced IL-10, and altered the kinetics of IFN-gamma and IL-2 production in young and old mice. Unique to older mice, exercise decreased mitogen-induced proliferation, increased splenocytes, and tended to decrease memory cells (CD44(hi+)). In contrast, exercise increased mitogen-induced proliferation but decreased the number of splenic lymphocyte and CD4+ cells in young mice. beta-Adrenergic blockade blunted the exercise-induced changes in anti-HSV IgM, IL-2, IFNgamma, and mitogen-induced proliferation in old but not young mice. The findings suggest that some of the immunomodulatory effects of chronic exercise are mediated via beta-adrenergic receptors and that the role of beta-adrenergic receptors is age dependent.  相似文献   

17.
We aimed to determine whether sex differences in humans extend to the dynamic response of the left ventricular (LV) chamber to changes in heart rate (HR). Several observations suggest sex influences LV structure and function in health; moreover, this physiology is also affected in a sex-specific manner by aging. Eight postmenopausal women and eight similarly aged men underwent a cardiac catheterization-based study for force-interval relationships of the LV. HR was controlled by right atrial (RA) pacing, and LV +dP/dt(max) and volume were assessed by micromanometer-tipped catheter and Doppler echocardiography, respectively. Analysis of approximated LV pressure-volume relationships was performed using a time-varying model of elastance. External stroke work was also calculated. The relationship between HR and LV +dP/dt(max) was expressed as LV +dP/dt(max) = b + mHR. The slope (m) of the relationship was steeper in women compared with men (11.8 ± 4.0 vs. 6.1 ± 4.1 mmHg·s(-1)·beats(-1)·min(-1), P = 0.01). The greater increase in contractility in women was reproducibly observed after normalizing LV +dP/dt(max) to LV end-diastolic volume (LVVed) or by measuring end-systolic elastance. LVVed and stroke volume decreased more in women. Thus, despite greater increases in contractility, HR was associated with a lesser rise in cardiac output and a steeper fall in external stroke work in women. Compared with men, women exhibit greater inotropic responses to incremental RA pacing, which occurs at the same time as a steeper decline in external stroke work. In older adults, we observed sexual dimorphism in determinants of LV mechanical performance.  相似文献   

18.
One of the most debilitating effects of primary aging is the decline in aerobic exercise capacity. One of its causes is an age-related decline in peak exercise stroke volume. This study's main purpose was to determine the cardiovascular adaptations to aging that most influence peak exercise stroke volume in the elderly. We hypothesized that increased left ventricular (LV) filling and mild concentric LV remodeling would be associated with an increase in peak exercise stroke volume corrected for lean body mass (LBM) and that an increased augmentation index (AI), which is a marker of arterial stiffness, would be associated with a decrease. A second aim was to determine the adaptations to aging that most influence LV concentric remodeling in the elderly. We hypothesized that AI would be a predictor of LV mass/LBM and the LV posterior wall thickness-to-LV radius ratio (h/r). We performed a cross-sectional study of cardiac and vascular adaptations to aging in 52 sedentary, elderly subjects. LV filling [as measured by the early-to-late transmitral flow velocity ratio (E/A)] was inversely correlated with and was an independent predictor of peak exercise stroke volume/LBM and was also a predictor of LV remodeling. AI was a predictor of LV remodeling (LV mass/LBM) but not of peak exercise stroke volume/LBM. We conclude that 1) maintenance of LV filling (E/A <1) is associated with a higher peak exercise stroke volume/LBM in very elderly subjects and thus may be a useful adaptation that enhances stroke volume during peak exercise, 2) LV remodeling and AI are less influential on peak exercise stroke volume/LBM, and 3) AI was the most important predictor of LV remodeling.  相似文献   

19.
During incremental exercise, stroke volume (SV) plateaus at 40-50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting ("LV twist mechanics") contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting (P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart.  相似文献   

20.
This study sought to determine the influence of age on the left ventricular (LV) response to prolonged exercise (PE; 150 min). LV systolic and diastolic performance was assessed using echocardiography (ECHO) before (pre) and 60 min following (post) exercise performed at 80% maximal aerobic power in young (28 ± 4.5 years; n = 18; mean ± SD) and middle-aged (52 ± 3.9 years; n = 18) participants. LV performance was assessed using two-dimensional ECHO, including speckle-tracking imaging, to determine LV strain (LV S) and LV S rate (LV SR), in addition to Doppler measures of diastolic function. We observed a postexercise elevation in LV S (young: -19.5 ± 2.1% vs. -21.6 ± 2.1%; middle-aged: -19.9 ± 2.3% vs. -20.8 ± 2.1%; P < 0.05) and LV SR (young: -1.19 ± 0.1 vs. -1.37 ± 0.2; middle-aged: -1.20 ± 0.2 vs. -1.38 ± 0.2; P < 0.05) during recovery in both groups. Diastolic function was reduced during recovery, including the LV SR ratio of early-to-late atrial diastolic filling (SR(e/a)), in young (2.35 ± 0.7 vs. 1.89 ± 0.5; P < 0.01) and middle-aged (1.51 ± 0.5 vs. 1.05 ± 0.2; P < 0.01) participants, as were conventional indices including the E/A ratio. Dobutamine stress ECHO revealed a postexercise depression in LV S in response to increasing dobutamine dose, which was similar in both young (pre-exercise dobutamine 0 vs. 20 μg·kg(-1)·min(-1): -19.5 ± 2.1 vs. -27.2 ± 2.2%; postexercise dobutamine 0 vs. 20 μg·kg(-1)·min(-1): -21.6 ± 2.1 vs. -23.7 ± 2.2%; P < 0.05) and middle-aged participants (pre: -19.9 ± 2.3 vs. -25.3 ± 2.7%; post: -20.8 ± 2.1 vs. -23.5 ± 2.7; P < 0.05). This was despite higher noradrenaline concentrations immediately postexercise in the middle-aged participants compared with young (4.26 ± 2.7 nmol/L vs. 3.00 ± 1.4 nmol/L; P = 0.12). These data indicate that LV dysfunction is observed following PE and that advancing age does not increase the magnitude of this response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号