首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to its exquisite sensitivity and the ability to monitor and control individual cells at the level of ion channels, patch-clamping is the gold standard of electrophysiology applied to disease models and pharmaceutical screens alike 1. The method traditionally involves gently contacting a cell with a glass pipette filled by a physiological solution in order to isolate a patch of the membrane under its apex 2. An electrode inserted in the pipette captures ion-channel activity within the membrane patch or, when ruptured, for the whole cell. In the last decade, patch-clamp chips have been proposed as an alternative 3, 4: a suspended film separates the physiological medium from the culture medium, and an aperture microfabricated in the film replaces the apex of the pipette. Patch-clamp chips have been integrated in automated systems and commercialized for high-throughput screening 5. To increase throughput, they include the fluidic delivery of cells from suspension, their positioning on the aperture by suction, and automated routines to detect cell-to-probe seals and enter into whole cell mode. We have reported on the fabrication of a silicon patch-clamp chip with optimized impedance and orifice shape that permits the high-quality recording of action potentials in cultured snail neurons 6; recently, we have also reported progress towards interrogating mammalian neurons 7. Our patch-clamp chips are fabricated at the Canadian Photonics Fabrication Centre 8, a commercial foundry, and are available in large series. We are eager to engage in collaborations with electrophysiologists to validate the use of the NRCC technology in different models. The chips are used according to the general scheme represented in Figure 1: the silicon chip is at the bottom of a Plexiglas culture vial and the back of the aperture is connected to a subterranean channel fitted with tubes at either end of the package. Cells are cultured in the vial and the cell on top of the probe is monitored by a measuring electrode inserted in the channel.The two outside fluidic ports facilitate solution exchange with minimal disturbance to the cell; this is an advantage compared to glass pipettes for intracellular perfusion. 相似文献   

2.
Obtaining high-throughput electrophysiological recordings is an ongoing challenge in ion channel biophysics and drug discovery. One particular area of development is the replacement of glass pipettes with planar devices in order to increase throughput. However, successful patch-clamp recordings depend on a surface coating which ideally should promote and stabilize giga-seal formation. Here, we present data supporting the use of a structured SiO(2) coating to improve the ability of cells to form a "seal" with a planar patch-clamp substrate. The method is based on a correlation study taking into account structure and size of the pores, surface roughness and chip capacitance. The influence of these parameters on the quality of the seal was assessed. Plasma-enhanced chemical vapour deposition (PECVD) of SiO(2) led to an hourglass structure of the pore and a tighter seal than that offered by a flat, thermal SiO(2) surface. The performance of PECVD chips was validated by recording recombinant potassium channels, BK(Ca), expressed in stable HEK-293 cell lines and in inducible CHO cell lines and low conductance IRK1, and endogenous cationic currents from CHO cells. This multiparametric investigation led to the production of improved chips for planar patch-clamp applications which allow electrophysiological recordings from a wide range of cell lines.  相似文献   

3.
We report on a simple and high‐yield manufacturing process for silicon planar patch‐clamp chips, which allow low capacitance and series resistance from individually identified cultured neurons. Apertures are etched in a high‐quality silicon nitride film on a silicon wafer; wells are opened on the backside of the wafer by wet etching and passivated by a thick deposited silicon dioxide film to reduce the capacitance of the chip and to facilitate the formation of a high‐impedance cell to aperture seal. The chip surface is suitable for culture of neurons over a small orifice in the substrate with minimal leak current. Collectively, these features enable high‐fidelity electrophysiological recording of transmembrane currents resulting from ion channel activity in cultured neurons. Using cultured Lymnaea neurons we demonstrate whole‐cell current recordings obtained from a voltage‐clamp stimulation protocol, and in current‐clamp mode we report action potentials stimulated by membrane depolarization steps. Despite the relatively large size of these neurons, good temporal and spatial control of cell membrane voltage was evident. To our knowledge this is the first report of recording of ion channel activity and action potentials from neurons cultured directly on a planar patch‐clamp chip. This interrogation platform has enormous potential as a novel tool to readily provide high‐information content during pharmaceutical assays to investigate in vitro models of disease, as well as neuronal physiology and synaptic plasticity. Biotechnol. Bioeng. 2010;107:593–600. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
We report on the direct electrical interfacing of a recombinant ion channel to a field-effect transistor on a silicon chip. The ion current through activated maxi-K(Ca) channels in human embryonic kidney (HEK293) cells gives rise to an extracellular voltage between cell and chip that controls the electronic source-drain current. A comparison with patch-clamp recording shows that the channels at the cell/chip interface are fully functional and that they are significantly accumulated there. The direct coupling of potassium channels to a semiconductor on the level of an individual cell is the prototype for an iono-electronic interface of ligand-gated or G protein-coupled ion channels and the development of screening biosensors with many transfected cells on a chip with a large array of transistors.  相似文献   

5.
A型流感病毒H5N1的M2离子通道(H5M2)基因经优化后由人工合成,适合于哺乳动物细胞中表达.通过酶切克隆于pcDNA4质粒,并在HEK293细胞中建立稳定细胞株.Western blotting和免疫荧光证实H5M2在稳定细胞中只有在四环素诱导下才能表达,并经膜片钳证实在HEK293细胞中表达的H5M2具有H 通道活性,为M2离子通道功能的研究和M2离子通道阻断剂筛选方法的建立提供了参考.  相似文献   

6.
Summary The patch-clamp technique for the recording of single-channel currents was used to investigate the activity of ion channels in the intact epithelium of the toad urinary bladder. High resistance seals were obtained from the apical membrane of tightly stretched tissue. Single-channel recordings revealed the activity of a variety of ion channels that could be classified in 4 groups according to their mean ion conductances, ranging from 5 to 59 pS. In particular, we observed highly selective, amiloridesensitive Na channels with a mean conductance of 4.8 pS, channels with a similar conductance that were not Na-selective and channels with mean conductance values of 17–58 pS that were mostly seen after stimulation of the tissue with vasopressin or cAMP. When inside-out patches from the apical membrane were exposed to 110mm fluoride, large conductances (86–490 pS) appeared.  相似文献   

7.
Summary The human cell line U-937 has been used extensively to model many macrophage functions. We have examined the cell membranes of human monocyte-derived macrophages (HMDM) and U-937 cells to compare membrane properties as expressed by single ion channel currents. The patch-clamp technique was applied to isolated, nonactivated, inside-out patches of cell membranes obtained from HMDM and from the U-937 cell line. Voltage-gated potassium channels of similar conductance but different kinetics are present in both types of cells, and a calcium-activated potassium channel is present only in the HMDM. These differences in ion channel properties suggest fundamentally different behavior between these two cell types at the level of the cell membrane.  相似文献   

8.
Planar patch clamp has revolutionized characterization of ion channel behavior in drug discovery primarily via advancement in high throughput. Lab use of planar technology, however, addresses different requirements and suffers from inflexibility to enable wide range of interrogation via a single cell. This work presents integration of planar patch clamp with microfluidics, achieving multiple solution exchanges for tailor-specific measurement and allowing rapid replacement of the cell-contacting aperture. Studies via endogenously expressed ion channels in HEK 293T cells were commenced to characterize the device. Results reveal the microfluidic concentration generator produces distinct solution/drug combination/concentrations on-demand. Volume-regulated chloride channel and voltage-gated potassium channels in HEK 293T cells immersed in generated solutions under various osmolarities or drug concentrations show unique channel signature under specific condition. Excitation and blockage of ion channels in a single cell was demonstrated via serial solution exchange. Robustness of the reversible bonding and ease of glass substrate replacement were proven via repeated usage of the integrated device. The present approach reveals the capability and flexibility of integrated microfluidic planar patch-clamp system for ion channel assays.  相似文献   

9.
We report on a silicon wafer-based device that can be used for recording macroscopic ion channel protein activities across a diverse group of cell-types. Gigaohm seals were achieved for CHO-K1 and RIN m5F cells, and both cell-attached and whole-cell mode configurations were also demonstrated. Two distinct intrinsic potassium ion channels were recorded in whole-cell mode for HIT-T15 and RAW 264.7 cells. Polydimethylsiloxane (PDMS) microfluidics were also coupled with the micromachined silicon chips in order to demonstrate that a single cell could be selectively directed to a micropore, and membrane protein currents could subsequently be recorded. These silicon chip-based devices have significant advantages over traditional micropipette approaches, and may serve as combinatorial tools for investigating membrane biophysics, pharmaceutical screening, and other bio-sensing tasks.  相似文献   

10.
Imaging single-channel calcium microdomains   总被引:3,自引:0,他引:3  
Demuro A  Parker I 《Cell calcium》2006,40(5-6):413-422
The Ca(2+) microdomains generated around the mouth of open ion channels represent the basic building blocks from which cytosolic Ca(2+) signals are constructed. Recent improvements in optical imaging techniques now allow these microdomains to be visualized as single channel calcium fluorescence transients (SCCaFTs), providing information about channel properties that was previously accessible only by electrophysiological patch-clamp recordings. We review recent advances in single channel Ca(2+) imaging methodologies, with emphasis on total internal reflection fluorescence microscopy (TIRFM) as the technique of choice for recording SCCaFTs from voltage- and ligand-gated plasmalemmal ion channels. This technique of 'optical patch-clamp recording' is massively parallel, permitting simultaneous imaging of hundreds of channels; provides millisecond resolution of gating kinetics together with sub-micron spatial resolution of channel locations; and is applicable to diverse families of membrane channels that display partial permeability to Ca(2+) ions.  相似文献   

11.
Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation.  相似文献   

12.
Ion channel proteins are universal devices for fast communication across biological membranes. The temporal signature of the ionic flux they generate depends on properties intrinsic to each channel protein as well as the mechanism by which it is generated and controlled and represents an important area of current research. Information about the operational dynamics of ion channel proteins can be obtained by observing long stretches of current produced by a single molecule. Described here is a protocol for obtaining one-channel cell-attached patch-clamp current recordings for a ligand gated ion channel, the NMDA receptor, expressed heterologously in HEK293 cells or natively in cortical neurons. Also provided are instructions on how to adapt the method to other ion channels of interest by presenting the example of the mechano-sensitive channel PIEZO1. This method can provide data regarding the channel’s conductance properties and the temporal sequence of open-closed conformations that make up the channel’s activation mechanism, thus helping to understand their functions in health and disease.  相似文献   

13.
Summary The observation that the nuclear envelope outer mem brane contains ion channels raises the question of whether these conductances communicate between the cytosol and the nuclear envelope cisternae or between the cytosol and the cytoplasm. Failure to detect large, nonselective holes using the patch-clamp technique has led to the speculation that ion channels and nuclear pores are in fact the same. In this paper we present evidence that the ionic channel, recorded in isolated liver nuclei with the patch-clamp configura tion of “nucleus-attached,” spans the double membrane of the envelope, providing a direct contact between nucleoplasm and cytoplasm.  相似文献   

14.
探索了棉铃虫Helicoverpa armigera幼虫神经细胞的急性分离与体外培养的条件,并利用全细胞膜片钳技术首次对棉铃虫幼虫急性分离神经细胞的电压门控性钠、钾和钙通道的基本电生理学特性进行了研究。结果表明,棉铃虫幼虫中枢神经细胞在TC-100、L-15和Grace培养基中均可贴壁生长,在DMEM培养基中基本不能存活。在TC-100培养基分别与其它三种培养基按一定比例混合形成的培养液中,TC-100与L-15等量混合培养液更适合于神经细胞的生长。全细胞电压钳条件下,可分别记录到电压门控性钠、钾和钙通道电流。钙电流特征为高电压激活、缓慢失活;钠电流对河豚毒素敏感;钾电流可被细胞外液中的氯化四乙胺和4-氨基吡啶抑制。  相似文献   

15.
Examine the feasibility of whole-cell patch-clamp recordings from the cardiac ventricular slices of newborn (P(3)-P(7)) Sprague-Dawley rats to identify a better substitute for single cardiac myocytes prepared using enzymatic treatment. High resistance seals (>1 G?) were obtained from cardiac ventricle tissues prepared without using enzymatic treatment. Thereafter, cell-attached and whole-cell patch-clamp techniques were used on thin cardiac slices (200 μm thick) in 2009 in the Institute of Molecular Medicine of Peking University. An averaged sodium current (n=11 cells) was recorded in the cell-attached mode, and this displayed features similar to those previously reported for isolated rat ventricular myocytes. The outward potassium current, hyperpolarization-activated cation channel or I (f) channel (HCN channel), and action potential were recorded in the whole-cell mode (n=2 cells), and the identical properties were observed from the cardiac slices. The cell-attached mode is stable and reliable for recording the ion current. The resting potential for cardiac slices measured using current-clamp recording in the whole-cell mode was -50 to -70 mV. The resting potential of cardiac slices has properties similar to those of enzyme-prepared cardiomyocytes, with the exception that it is positive. We achieved whole-cell patch-clamp recordings from cardiac slices and affirmed the feasibility and values of both cell-attached and whole-cell recording modes using this technique. Nevertheless, there remain difficulties and limitations associated with the application of whole-cell patch-clamping to cardiac slices, due primarily to the existence of large amounts of connective tissue even in newborn rats.  相似文献   

16.
Ion channel activity in cell-attached patch recordings shows channel behavior under more physiological conditions than whole-cell and excised patch measurements. Yet the analysis of cell-attached patch measurements is complicated by the fact that the system is ill defined with respect to the intracellular ion activities and the electrical potential actually experienced by the membrane patch. Therefore, of the several patch-clamp configurations, the information that is obtained from cell-attached patch measurements is the most ambiguous. The present study aims to achieve a better understanding of cell-attached patch measurements. Here we describe a method to calculate the intracellular ion concentration and membrane potential prevailing during cell-attached patch recording. The first step is an analysis of the importance of the input resistance of the intact cell on the cell-attached patch measurement. The second step, and actual calculation, is based on comparison of the single channel conductance and reversal potential in the cell-attached patch and excised patch configurations. The method is demonstrated with measurements of membrane potential and cytosolic K+ concentrations in Vicia faba guard cells. The approach described here provides an attractive alternative to the measurement of cytosolic ion concentrations with fluorescent probes or microelectrodes. Received: 3 April 1998/Revised: 6 August 1998  相似文献   

17.
The electrical properties of Escherichia coli cells were examined by the patch-clamp technique. Giant cells or giant spheroplasts were generated by five different methods. By electron micrographic and other criteria we determined that the patches are most likely from the outer membrane. We regularly observed currents through at least two types of channels in this membrane. The first current is mechanosensitive and voltage-dependent, and can be observed in single gene mutants of the known major porins (ompF, ompC, phoE, lamB); this channel may represent a minor porin or a new class of outer membrane protein. The possible identity of the second, voltage-sensitive channel with one of the known outer membrane proteins is being explored. The high-resistance seals consistently formed on these patches and the presence of gated ion channels suggest that most of the pores of the outer membrane are not statically open, as commonly held, but are closed at rest and may be openable by physiological stimuli.  相似文献   

18.
利用双偏振极化干涉测量仪(DPI)研究了界面上配基种类对BSA吸附行为的影响。采用3-氨基丙基三乙氧基硅烷(APTES)、3-(甲氨基)丙基三甲氧基硅烷(MAPTMS)和N,N-二乙基-3-氨基丙基三甲氧基硅烷(DAPTMS)对DPI芯片进行了修饰,利用X射线光电子能谱比较了芯片上不同配基的密度,采用原子力显微镜(AFM)和DPI对界面上BSA吸附行为进行了研究。结果表明APTES修饰界面上BSA呈饼状,高配基密度易导致BSA多位点吸附。相同偶联密度条件下BSA在DAPTMS修饰芯片的吸附量高于MAPTMS修饰芯片,但吸附层厚度一致,表明DAPTMS表面上BSA存在聚集现象;AFM扫描结果与DPI分析结果一致,证明了配基密度和种类不仅影响界面上蛋白质吸附量,而且影响蛋白质吸附密度和表面聚集行为。  相似文献   

19.
A microbial chip for bioassay was fabricated and its performance was characterized by scanning electrochemical microscopy (SECM). The microbial chip was prepared by spotting a suspension of Escherichia coli on a polystyrene substrate by using a glass capillary pen. The respiration activity of the E. coli spot was imaged with SECM by mapping the oxygen concentration around the spot. The SECM images of the microbial chips clearly showed spots with lower reduction currents, indicating that E. coli in the spots uptake oxygen by respiration. The bactericidal effects of antibiotics (streptomycin and ampicillin) were measured using the E. coli-based microbial chip, and discussed in comparison with the minimum inhibitory concentration (MIC) determined by an agar plate dilution method.  相似文献   

20.
Summary A voltage-sensitive, cation-selective ion channel ofEscherichia coli has been reconstituted into liposomes and studied with the patch-clamp method. The single channel conductance was 91 pS in symmetric solutions of 150mm KCl. Many channels were open most of the time, with frequent brief transitions to closed levels. Multiple conducting units could close and reopen simultaneously, and this apparent cooperativity in gating was increases with depolarizing voltages. Above a voltage threshold, the channels closed irreversibly, often in groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号