首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A growing body of data supports a view of the actin cytoskeleton of smooth muscle cells as a dynamic structure that plays an integral role in regulating the development of mechanical tension and the material properties of smooth muscle tissues. The increase in the proportion of filamentous actin that occurs in response to the stimulation of smooth muscle cells and the essential role of stimulus-induced actin polymerization and cytoskeletal dynamics in the generation of mechanical tension has been convincingly documented in many smooth muscle tissues and cells using a wide variety of experimental approaches. Most of the evidence suggests that the functional role of actin polymerization during contraction is distinct and separately regulated from the actomyosin cross-bridge cycling process. The molecular basis for the regulation of actin polymerization and its physiological roles may vary in diverse types of smooth muscle cells and tissues. However, current evidence supports a model for smooth muscle contraction in which contractile stimulation initiates the assembly of cytoskeletal/extracellular matrix adhesion complex proteins at the membrane, and proteins within this complex orchestrate the polymerization and organization of a submembranous network of actin filaments. This cytoskeletal network may serve to strengthen the membrane for the transmission of force generated by the contractile apparatus to the extracellular matrix, and to enable the adaptation of smooth muscle cells to mechanical stresses. Better understanding of the physiological function of these dynamic cytoskeletal processes in smooth muscle may provide important insights into the physiological regulation of smooth muscle tissues.  相似文献   

2.
Smooth muscle cells have developed a contractile machinery that allows them to exert tension on the surrounding extracellular matrix over their entire length. This has been achieved by coupling obliquely organized contractile filaments to a more-or-less longitudinal framework of cytoskeletal elements. Earlier structural data suggested that the cytoskeleton was composed primarily of intermediate filaments and played only a passive role. More recent findings highlight the segregation of actin isotypes and of actin-associated proteins between the contractile and cytoskeletal domains and raise the possibility that the cytoskeleton performs a more active function. Current efforts focus on defining the relative contributions of myosin cross-bridge cycling and actin-associated protein interactions to the maintenance of tension in smooth muscle tissue.  相似文献   

3.
Airway smooth muscle exhibits the property of length adaptation, which enables it to optimize its contractility to the mechanical conditions under which it is activated. Length adaptation has been proposed to result from a dynamic modulation of contractile and cytoskeletal filament organization, in which the cell structure adapts to changes in cell shape at different muscle lengths. Changes in filament organization would be predicted to alter muscle stiffness and extensibility. We analyzed the effects of tracheal muscle length at the time of contractile activation on the stiffness and extensibility of the muscle during subsequent stretch over a constant range of muscle lengths. Muscle strips were significantly stiffer and less extensible after contractile activation at a short length than after activation at a long length, consistent with the prediction of a shorter, thicker array of the cytoskeletal filaments at a short muscle length. Stretch beyond the length of contractile activation resulted in a persistent reduction in stiffness, suggesting a stretch-induced structural rearrangement. Our results support a model in which the filament organization of airway smooth muscle cells is plastic and can be acutely remodeled to adapt to the changes in the external physical environment.  相似文献   

4.
Transversal cytoskeletal organization of muscle fibers is well described, although very few data are available concerning protein content. Measurements of desmin, alpha-actinin, and actin contents in soleus and extensor digitorum longus (EDL) rat skeletal muscles, taken with the results previously reported for several dystrophin-glycoprotein complex (DGC) components, indicate that the contents of most cytoskeletal proteins are higher in slow-type fibers than in fast ones. The effects of hypokinesia and unloading on the cytoskeleton were also investigated, using hindlimb suspension. First, this resulted in a decrease in contractile protein contents, only after 6 wk, in the soleus. Dystrophin and associated proteins were shown to be reduced for soleus at 3 wk, whereas only the dystrophin-associated proteins were found to increase after 6 wk. On the other hand, the contents of DGC components were increased for EDL for the two durations. Desmin and alpha-actinin levels were unchanged in the same conditions. Consequently, it can be concluded that the cytoskeletal protein expression levels could largely contribute to muscle fiber adaptation induced by modified functional demands.  相似文献   

5.
Airway smooth muscle (ASM) cells are constantly under mechanical strain as the lung cyclically expands and deflates, and this stretch is now known to modulate the contractile function of ASM. However, depending on the experimental conditions, stretch is either beneficial or harmful limiting or enhancing contractile force generation, respectively. Stretch caused by a deep inspiration is known to be beneficial in limiting or reversing airway constriction in healthy individuals, and oscillatory stretch lowers contractile force and stiffness or lengthens muscle in excised airway tissue strips. Stretch in ASM culture has generally been reported to cause increased contractile function through increases in proliferation, contractile protein content, and organization of the cell cytoskeleton. Recent evidence indicates the type of stretch is critically important. Growing cells on flexible membranes where stretch is non-uniform and anisotropic leads to pro-contractile changes, whereas uniform biaxial stretch causes the opposite effects. Furthermore, the role of contractile tone might be important in modulating the response to mechanical stretch in cultured cells. This report will review the contrasting evidence for modulation of contractile function of ASM, both in vivo and in vitro, and summarize the recent evidence that mechanical stress applied either acutely within 2 h or chronically over 11 d is a potent stimulus for cytoskeletal remodelling and stiffening. We will also point to new data suggesting that perhaps some of the difference in response to stretch might lie with one of the fundamental differences in the ASM environment in asthma and in culture--the presence of elevated contractile tone.  相似文献   

6.
《The Journal of cell biology》1990,111(6):2463-2473
Confocal laser scanning microscopy of isolated and antibody-labeled avian gizzard smooth muscle cells has revealed the global organization of the contractile and cytoskeletal elements. The cytoskeleton, marked by antibodies to desmin and filamin is composed of a mainly longitudinal, meandering and branched system of fibrils that contrasts with the plait-like, interdigitating arrangement of linear fibrils of the contractile apparatus, labeled with antibodies to myosin and tropomyosin. Although desmin and filamin were colocalized in the body of the cell, filamin antibodies labeled additionally the vinculin- containing surface plaques. In confocal optical sections the contractile fibrils showed a continuous label for myosin for at least 5 microns along their length: there was no obvious or regular interruption of label as might be expected for registered myosin filaments. The cytoplasmic dense bodies, labeled with antibodies to alpha-actinin exhibited a regular, diagonal arrangement in both extended cells and in cells shortened in solution to one-fifth of their extended length: after the same shortening, the fibrils of the cytoskeleton that showed colocalization with the dense bodies in extended cells became crumpled and disordered. It is concluded that the dense bodies serve as coupling elements between the cytoskeletal and contractile systems. After extraction with Triton X-100, isolated cells bound so firmly to a glass substrate that they were unable to shorten as a whole when exposed to exogenous Mg ATP. Instead, they contracted internally, producing integral of 10 regularly spaced contraction nodes along their length. On the basis of differences of actin distribution two types of nodes could be distinguished: actin-positive nodes, in which actin straddled the node, and actin-negative nodes, characterized by an actin-free center flanked by actin fringes of 4.5 microns minimum length on either side. Myosin was concentrated in the center of the node in both cases. The differences in node morphology could be correlated with different degrees of coupling of the contractile with the cytoskeletal elements, effected by a preparation-dependent variability of proteolysis of the cells. The nodes were shown to be closely related to the supercontracted cell fragments shown in the accompanying paper (Small et al., 1990) and furnished further evidence for long actin filaments in smooth muscle. Further, the segmentation of the contractile elements pointed to a hierarchial organization of the myofilaments governed by as yet undetected elements.  相似文献   

7.
This review is focused on the composition and organization of the junctional subsarcolemmal cytoskeleton of adult muscle fibers. The cytoskeleton of muscle fibers is organized in functionally distinct compartments and the subsarcolemmal cytoskeleton itself can be broadly divided into junctional (myotendinous junction, neuromuscular junction and costameres) and non-junctional domains. In junctional zones three different multimolecular cytoskeletal complexes coexist: the focal adhesion-type, the spectrin-based and the dystrophin vs utrophin-based membrane skeleton systems. These complexes extend over several levels, from intracytoplasmic to subsarcolemmal and transmembranous; their common feature is the anchorage of actin filaments emanating from the intracytoplasmic level. The different cytoskeletal proteins, their putative roles and their interactions with various signaling pathways are presented here in detail. The subsarcolemmal cytoskeleton complexes are thought to play distinct physiological roles (membrane stabilization, force transmission to extracellular matrix, ionic channel anchorage, etc) but their colocalization on the three sarcolemmal junctional domains strongly suggests interrelated or common functions.  相似文献   

8.
Cytoskeletal reorganization of the smooth muscle cell in response to contractile stimulation may be an important fundamental process in regulation of tension development. We used confocal microscopy to analyze the effects of cholinergic stimulation on localization of the cytoskeletal proteins vinculin, paxillin, talin and focal adhesion kinase (FAK) in freshly dissociated tracheal smooth muscle cells. All four proteins were localized at the membrane and throughout the cytoplasm of unstimulated cells, but their concentration at the membrane was greater in acetylcholine (ACh)-stimulated cells. Antisense oligonucleotides were introduced into tracheal smooth muscle tissues to deplete paxillin protein, which also inhibited contraction in response to ACh. In cells dissociated from paxillin-depleted muscle tissues, redistribution of vinculin to the membrane in response to ACh was prevented, but redistribution of FAK and talin was not inhibited. Muscle tissues were transfected with plasmids encoding a paxillin mutant containing a deletion of the LIM3 domain (paxillin LIM3 dl 444–494), the primary determinant for targeting paxillin to focal adhesions. Expression of paxillin LIM3 dl in muscle tissues also inhibited contractile force and prevented cellular redistribution of paxillin and vinculin to the membrane in response to ACh, but paxillin LIM3 dl did not inhibit increases in intracellular Ca2+ or myosin light chain phosphorylation. Our results demonstrate that recruitment of paxillin and vinculin to smooth muscle membrane is necessary for tension development and that recruitment of vinculin to the membrane is regulated by paxillin. Vinculin and paxillin may participate in regulating the formation of linkages between the cytoskeleton and integrin proteins that mediate tension transmission between the contractile apparatus and the extracellular matrix during smooth muscle contraction. tissue transfection; plasmids; cytoskeleton; talin; immunofluorescence  相似文献   

9.
Smooth muscle exhibits biophysical characteristics and physiological behaviors that are not readily explained by present paradigms of cytoskeletal and cross-bridge mechanics. There is increasing evidence that contractile activation of the smooth muscle cell involves an array of cytoskeletal processes that extend beyond cross-bridge cycling and the sliding of thick and thin filaments. We review here the evidence suggesting that the biophysical and mechanical properties of the smooth muscle cell reflect the integrated interactions of an array of highly dynamic cytoskeletal processes that both react to and transform the dynamics of cross-bridge interactions over the course of the contraction cycle. The activation of the smooth muscle cell is proposed to trigger dynamic remodeling of the actin filament lattice within cellular microdomains in response to local mechanical and pharmacological events, enabling the cell to adapt to its external environment. As the contraction progresses, the cytoskeletal lattice stabilizes, solidifies, and forms a rigid structure well suited for transmission of tension generated by the interaction of myosin and actin. The integrated molecular transitions that occur within the contractile cycle are interpreted in the context of microscale agitation mechanisms and resulting remodeling events within the intracellular microenvironment. Such an interpretation suggests that the cytoskeleton may behave as a glassy substance whose mechanical function is governed by an effective temperature.  相似文献   

10.
We carried out parallel experiments first on the slow clinostat and then in space-flight to examine the effects of altered gravity on the aggregation of the nicotinic acetylcholine receptors and the structure of the cytoskeleton in cultured Xenopus embryonic muscle cells. By examining the concordance between results from space flight and the clinostat, we tested whether the slow clinostat is a relevant simulation paradigm. Space-flown cells showed marked changes in the distribution and organization of actin filaments and had a reduced incidence of acetylcholine receptor aggregates at the site of contact with polystyrene beads. Similar effects were found after clinostat rotation. The sensitivity of synaptic receptor aggregation and cytoskeletal morphology suggests that in the microgravity of space cell behavior may be importantly altered.  相似文献   

11.
Abstract

There is compelling evidence that substrate stiffness affects cell adhesion as well as cytoskeleton organization and contractile activity. This work was designed to study the cytoskeletal contractile activity of single cells plated on micropost substrates of different stiffness using a numerical model simulating the intracellular tension of individual cells. We allowed cells to adhere onto micropost substrates of various rigidities and used experimental traction force data to infer cell contractility using a numerical model. The model shows that higher substrate stiffness leads to an increase in intracellular tension. The strength of this model is its ability to calculate the mechanical state of each cell in accordance to its individual cytoskeletal structure. This is achieved by regenerating a numerical cytoskeleton based on microscope images of the actin network of each cell. The resulting numerical structure consequently represents pulling characteristics on its environment similar to those generated by the cell in-vivo. From actin imaging we can calculate and better understand how forces are transmitted throughout the cell.  相似文献   

12.
Myocardial cells in culture offer many possibilities for studying cellular and molecular biology of cardiac muscles. However, it is important to know how long these cells can be maintained in vitro without significant structural and biochemical changes. In this study, we have investigated the morphological changes of myofibril proteins and cytoskeletons by using immunofluorescent techniques in cultured neonatal hamster myocardial cells at different culture durations. Our results have demonstrated that these cultured cells still contain intact myofibrils and cytoskeletal proteins after 6 days in vitro incubation, however, the organization of some of these proteins is altered. The proteins most sensitive to these in vitro conditions are: myosin heavy chain, actin and desmin. The data indicate that the duration of the culture and the contractile activity of the myocardial cells in culture can influence organization of their contractile apparatus and cytoskeleton.  相似文献   

13.
Phenotypic modulation of smooth muscle cells (SMC) involves dramatic changes in expression and organization of contractile and cytoskeletal proteins, but little is known of how this process is regulated. The present study used a cell culture model to investigate the possible involvement of RhoA, a known regulator of the actin cytoskeleton. In rabbit aortic SMC seeded into primary culture at moderate density, Rho activation was high at two functionally distinct time-points, first as cells modulated to the "synthetic" phenotype, and again upon confluence and return to the "contractile" phenotype. Rho expression increased with time, such that maximal expression occurred upon return to the contractile state. Transient transfection of synthetic state cells with constitutively active RhoA (Val14RhoA) caused a reduction in cell size and reorganization of cytoskeletal proteins to resemble that of the contractile phenotype. Actin and myosin filaments were tightly packed and highly organised while vimentin localised to the perinuclear region; focal adhesions were enlarged and concentrated at the cell periphery. Conversely, inhibition of endogenous Rho by C3 exoenzyme resulted in complete loss of contractile filaments without affecting vimentin distribution; focal adhesions were reduced in size and number. Treatment of synthetic state SMC with known regulators of SMC phenotype, heparin and thrombin, caused a modest increase in Rho activation. Long-term confluence and serum deprivation induced cells to return to a more contractile phenotype and this was augmented by heparin and thrombin. The results implicate RhoA for a role in regulating SMC phenotype and further show that activation of Rho by heparin and thrombin correlates with the ability of these factors to promote the contractile phenotype.  相似文献   

14.
Recently reported data from mechanical measurements of cultured airway smooth muscle cells show that stiffness of the cytoskeletal matrix is determined by the extent of static contractile stress borne by the cytoskeleton (Wang N, Toli?-N?rrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, and Stamenovi? D. Am J Physiol Cell Physiol 282, C606-C616, 2002). On the other hand, rheological measurements on these cells show that cytoskeletal stiffness changes with frequency of imposed mechanical loading according to a power law (Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas DF, and Fredberg JJ. Phys Rev Lett 87: 148102, 2001). In this study, we examine the possibility that these two empirical observations might be interrelated. We combine previously reported data for contractile stress of human airway smooth muscle cells with new data describing rheological properties of these cells and derive quantitative, mathematically tractable, and experimentally verifiable empirical relationships between contractile stress and indexes of cell rheology. These findings reveal an intriguing role of the contractile stress: although it maintains structural stability of the cell under applied mechanical loads, it may also regulate rheological properties of the cytoskeleton, which are essential for other cell functions.  相似文献   

15.
Cardiac muscle cells are equipped with specialized biochemical machineries for the rapid generation of force and movement central to the work generated by the heart. During each heart beat cardiac muscle cells perceive and experience changes in length and load, which reflect one of the fundamental principles of physiology known as the Frank–Starling law of the heart. Cardiac muscle cells are unique mechanical stretch sensors that allow the heart to increase cardiac output, and adjust it to new physiological and pathological situations. In the present review we discuss the mechano-sensory role of the cytoskeletal proteins with respect to their tight interaction with the sarcolemma and extracellular matrix. The role of contractile thick and thin filament proteins, the elastic protein titin, and their anchorage at the Z-disc and M-band, with associated proteins are reviewed in physiologic and pathologic conditions leading to heart failure. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé  相似文献   

16.
Actin polymerization as part of the normal smooth muscle response to various stimuli has been reported. The actin dynamics are believed to be necessary for cytoskeletal remodeling in smooth muscle in its adaptation to external stress and strain and for maintenance of optimal contractility. We have shown in our previous studies in airway smooth muscle that myosins polymerized in response to contractile activation as well as to adaptation at longer cell lengths. We postulated that the same response could be elicited from actins under the same conditions. In the present study, actin filament formation was quantified electron microscopically in cell cross sections. Nanometer resolution allowed us to examine regional distribution of filaments in a cell cross section. Airway smooth muscle bundles were fixed in relaxed and activated states at two lengths; muscle preparations were also fixed after a period of oscillatory strain, a condition known to cause depolymerization of myosin filaments. The results indicate that contractile activation and increased cell length nonsynergistically enhanced actin polymerization; the extent of actin polymerization was substantially less than that of myosin polymerization. Oscillatory strain increased thin filament formation. Although thin filament density was found higher in cytoplasmic areas near dense bodies, contractile activation did not preferentially enhance actin polymerization in these areas. It is concluded that actin thin filaments are dynamic structures whose length and number are regulated by the cell in response to changes in extracellular environment and that polymerization and depolymerization of thin filaments occur uniformly across the whole cell cross section.  相似文献   

17.
Syntrophins are scaffolding proteins that link signaling molecules to dystrophin and the cytoskeleton. We previously reported that syntrophins interact with diacylglycerol kinase-zeta (DGK-zeta), which phosphorylates diacylglycerol to yield phosphatidic acid. Here, we show syntrophins and DGK-zeta form a complex in skeletal muscle whose translocation from the cytosol to the plasma membrane is regulated by protein kinase C-dependent phosphorylation of the DGK-zeta MARCKS domain. DGK-zeta mutants that do not bind syntrophins were mislocalized, and an activated mutant of this sort induced atypical changes in the actin cytoskeleton, indicating syntrophins are important for localizing DGK-zeta and regulating its activity. Consistent with a role in actin organization, DGK-zeta and syntrophins were colocalized with filamentous (F)-actin and Rac in lamellipodia and ruffles. Moreover, extracellular signal-related kinase-dependent phosphorylation of DGK-zeta regulated its association with the cytoskeleton. In adult muscle, DGK-zeta was colocalized with syntrophins on the sarcolemma and was concentrated at neuromuscular junctions (NMJs), whereas in type IIB fibers it was found exclusively at NMJs. DGK-zeta was reduced at the sarcolemma of dystrophin-deficient mdx mouse myofibers but was specifically retained at NMJs, indicating that dystrophin is important for the sarcolemmal but not synaptic localization of DGK-zeta. Together, our findings suggest syntrophins localize DGK-zeta signaling complexes at specialized domains of muscle cells, which may be critical for the proper control of lipid-signaling pathways regulating actin organization. In dystrophic muscle, mislocalized DGK-zeta may cause abnormal cytoskeletal changes that contribute to disease pathogenesis.  相似文献   

18.
Stable polymers of the axonal cytoskeleton: the axoplasmic ghost   总被引:31,自引:22,他引:9       下载免费PDF全文
We have examined the monomer-polymer equilibria which form the cytoskeletal polymers in squid axoplasm by extracting protein at low concentrations of monomer. The solution conditions inside the axon were matched as closely as possible by the extraction buffer (buffer P) to preserve the types of protein associations that occur in axoplasm. Upon extraction in buffer P, all of the neurofilament proteins in axoplasm remain polymerized as part of the stable neurofilament network. In contrast, most of the polymerized tubulin and actin in axoplasm is soluble although a fraction of these proteins also exists as a stable polymer. Thus, the axoplasmic cytoskeleton contains both stable polymers and soluble polymers. We propose that stable polymers, such as neurofilaments, conserve cytoskeletal organization because they tend to remain polymerized, whereas soluble polymers increase the plasticity of the cytoskeleton because they permit rapid and reversible changes in cytoskeletal organization.  相似文献   

19.
A major development in smooth muscle research in recent years is the recognition that the myofilament lattice of the muscle is malleable. The malleability appears to stem from plastic rearrangement of contractile and cytoskeletal filaments in response to stress and strain exerted on the muscle cell, and it allows the muscle to adapt to a wide range of cell lengths and maintain optimal contractility. Although much is still poorly understood, we have begun to comprehend some of the basic mechanisms underlying the assembly and disassembly of contractile and cytoskeletal filaments in smooth muscle during the process of adaptation to large changes in cell geometry. One factor that likely facilitates the plastic length adaptation is the ability of myosin filaments to form and dissolve at the right place and the right time within the myofilament lattice. It is proposed herein that formation of myosin filaments in vivo is aided by the various filament-stabilizing proteins, such as caldesmon, and that the thick filament length is determined by the dimension of the actin filament lattice. It is still an open question as to how the dimension of the dynamic filament lattice is regulated. In light of the new perspective of malleable myofilament lattice in smooth muscle, the roles of many smooth muscle proteins could be assigned or reassigned in the context of plastic reorganization of the contractile apparatus and cytoskeleton.  相似文献   

20.
In the mammalian testis, peritubular myoid cells (PM cells) surround the seminiferous tubules (STs), express cytoskeletal markers of true smooth muscle cells, and participate in the contraction of the ST. It has been claimed that PM cells contain bundles of actin filaments distributed orthogonally in an intermingled mesh. Our hypothesis is that these actin filaments are not forming a random intermingled mesh, but are actually arranged in contractile filaments in independent layers. The aim of this study is to describe the organization of the actin cytoskeleton in PM cells from adult rat testes and its changes during endothelin-1-induced ST contraction. For this purpose, we isolated segments of ST corresponding to the stages IX-X of the spermatogenic cycle (ST segments), and analyzed the actin and myosin filament distribution by confocal and transmission electron microscopy. We found that PM cells have actin and myosin filaments interconnected in thick bundles (AF-MyF bundles). These AF-MyF bundles are distributed in two independent layers: an inner layer toward the seminiferous epithelium, and an outer layer toward the interstitium, with the bundles oriented perpendicularly and in parallel to the main ST axis, respectively. In endothelin-1 contracted ST segments, PM cells increased their thickness and reduced their length in both directions, parallel and perpendicular to the main ST axis. The AF-MyF bundles maintained the same organization in two layers, although both layers appeared significantly thicker. We believe that this is the first time this arrangement of AF-MyF bundles in two independent layers has been shown in smooth muscle cells, and that this organization would allow the cell to generate contractile force in two directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号