首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 695 毫秒
1.
Metabolic engineering of microorganisms is an alternative and attractive route for production of valuable terpenoids that are usually extracted from plant sources. Tanshinones are the bioactive components of Salvia miltiorrhizha Bunge, which is a well‐known traditional Chinese medicine widely used for treatment of many cardiovascular diseases. As a step toward microbial production of tanshinones, copalyl diphosphate (CPP) synthase, and normal CPP kaurene synthase‐like genes, which convert the universal diterpenoid precursor geranylgeranyl diphosphate (GGPP) to miltiradiene (an important intermediate of the tanshinones synthetic pathway), was introduced into Saccharomyces cerevisiae, resulting in production of 4.2 mg/L miltiradiene. Improving supplies of isoprenoid precursors was then investigated for increasing miltiradiene production. Although over‐expression of a truncated 3‐hydroxyl‐3‐methylglutaryl‐CoA reductase (tHMGR) and a mutated global regulatory factor (upc2.1) gene did improve supply of farnesyl diphosphate (FPP), production of miltiradiene was not increased while large amounts of squalene (78 mg/L) were accumulated. In contrast, miltiradiene production increased to 8.8 mg/L by improving supply of GGPP through over‐expression of a fusion gene of FPP synthase (ERG20) and endogenous GGPP synthase (BTS1) together with a heterologous GGPP synthase from Sulfolobus acidocaldarius (SaGGPS). Auxotrophic markers in the episomal plasmids were then replaced by antibiotic markers, so that engineered yeast strains could use rich medium to obtain better cell growth while keeping plasmid stabilities. Over‐expressing ERG20‐BTS1 and SaGGPS genes increased miltiradiene production from 5.4 to 28.2 mg/L. Combinatorial over‐expression of tHMGR‐upc2.1 and ERG20‐BTS1‐SaGGPS genes had a synergetic effects on miltiradiene production, increasing titer to 61.8 mg/L. Finally, fed‐batch fermentation was performed, and 488 mg/L miltiradiene was produced. The yeast strains engineered in this work provide a basis for creating an alternative way for production of tanshinones in place of extraction from plant sources. Biotechnol. Bioeng. 2012; 109: 2845–2853. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The yeast Saccharomyces cerevisiae strain LB332 bearing a mutation in the ERG20 gene encoding farnesyl diphosphate synthase (FPPS) synthesizes significantly longer dolichols than the wild type strain FL100 (14-31 and 14-19 isoprene units, respectively). The measurement of the short chain prenyl alcohols excreted into the medium shows that increased amounts of geraniol, dimethylallyl and isopentenyl alcohols but not farnesol are synthesized by the mutant strain. The wild type FPPS synthesizes farnesyl diphosphate (FPP) as the only product. The K197E substitution, as opposed to F112A/F113S in avian FPPS, does not change product specificity. Consequently, the possibility that mutated yeast FPPS synthesizes longer polyprenols is unlikely. This is supported by additional evidence such as in vitro analysis of the mutated FPPS products and molecular modeling. We suggest that formation of longer dolichols in vivo is the result of a change in the isopentenyl diphosphate/farnesyl diphosphate ratio caused by the erg20 mutation which in turn affects the activity of cis-prenyltransferase.  相似文献   

3.
UDP-GlcNAc 2-epimerase/ManNAc kinase is the key enzyme of sialic acid biosynthesis in mammals. Its functional expression is a prerequisite for early embryogenesis and for the synthesis of several cell recognition motifs in adult organism. This bifunctional enzyme is involved in the development of different diseases like sialuria or hereditary inclusion body myopathy. For a detailed understanding of the enzyme, large amounts of the pure active protein are needed. Different heterologous cell systems were therefore analyzed for the enzyme, which was found to be functionally expressed in Escherichia coli, the yeast strains Saccharomyces cerevisiae and Pichia pastoris, and insect cells. In all these cell types, the expressed enzyme displayed both epimerase and kinase activities. In E. coli, up to 2mg protein/l cell culture was expressed, in yeast cells only 0.4mg/L, while up to 100mg/L, were detected in insect cells. In all three cell systems, insoluble protein aggregates were also observed. Purification from E. coli resulted in 100microg/L pure and structurally intact protein. For insect cells, purification methods were established which resulted in up to 50mg/L pure, soluble, and active protein. In summary, expression and purification of the UDP-GlcNAc 2-epimerase/ManNAc kinase in Sf-900 cells can yield the milligram amounts of protein required for structural characterization of the enzyme. However, the easier expression in E. coli and yeast provides sufficient quantities for enzymatic and kinetic characterization.  相似文献   

4.
角鲨烯因具有很强的抗氧化、抗菌和抗肿瘤活性,被普遍应用于医药、保健品和化妆品等领域。文中在实验室构建的高效合成萜类化合物底盘菌株工作的基础上,以角鲨烯为目标产物,通过过表达法尼基焦磷酸合酶基因ispA得到高效合成三萜化合物的底盘菌株;然后对原核生物来源的角鲨烯合酶进行系统发育分析、筛选、克隆和表达,得到两株高效合成角鲨烯的大肠杆菌Escherichia coli工程菌株。其中,导入来源于嗜热蓝细菌Thermosynechococcus elongatus和深蓝聚球蓝细菌Synechococcus lividus的角鲨烯合酶的工程菌株,角鲨烯产量分别达到 (16.5±1.4) mg/g (细胞干重含量,后同) 和 (12.0±1.9) mg/g,发酵液浓度达到 (167.1±14.3) mg/L和(121.8±19.5) mg/L。相比于当前普遍使用的人源角鲨烯合酶及初代菌株,来源于T. elongatus和S. lividus的角鲨烯合酶分别使角鲨烯产量大幅提升了3.3倍和2.4倍,为原核细胞异源合成角鲨烯打下坚实的基础。  相似文献   

5.
球孢白僵菌丝氨酸蛋白酶基因CDEP-1在毕赤酵母中的表达   总被引:1,自引:0,他引:1  
我们从球孢白僵菌中克隆了丝氨酸蛋白酶Pr1类基因CDEP-1。为明确CDEP-1的功能、评价其在害虫生物防治中的潜力,需要大量制备具有生物活性的CDEP-1编码蛋白。由于大肠杆菌系统表达真核基因存在产物复性困难的问题,本文利用毕赤酵母系统来表达CDEP-1。结果表明,CDEP-1可在毕赤酵母中高效的分泌表达,而且产物活性高,甲醇诱导48h后上清液中的酶活即可达到38,266U/L。诱导表达的上清液经浓缩后进行凝胶过滤层析,得到了CDEP-1的初纯品,蛋白质含量为50mg/L。将纯化的蛋白酶CDEP-1免疫家兔,制备了CDEP-1的抗血清。Westernblotting分析表明,制备的抗血清可特异性地检测CDEP-1。  相似文献   

6.
The coding region of the farnesyldiphosphate synthase (FDP synthase) gene from Saccharomyces cerevisiae has been inserted into a pBin19 vector, downstream of the cauliflower mosaic virus (CaMV) 35S promoter, in order to allow its expression in the genome of a higher plant, Nicotiana tabacum. We have produced transgenic tobacco in which the expression of the foreign gene leads to functional FDP synthase activity. In these transgenic plants, total FDP synthase-specific activity is increased 12-fold compared to controls. This increase of FDP synthase activity has been correlated to a clear increase of both sterol and carotenoid biosynthesis. This heterologous expression is also related to an increased resistance of transformed plants to R172117, a specific inhibitor of FDP synthase, and to sterol biosynthesis inhibitors such as flusilazol and fenpropimorph.Abbreviations: AP, Annick Petit; BAP, benzylaminopurine; CaMV, cauliflower mosaic virus; CTAB, cetyltrimethylammonium bromide; DMAEDP, dimethylamino ethyl diphosphate; DMADP, dimethylallyl diphosphate; DTT, dithiothreitol; ERG12, mevalonate kinase yeast gene; ERG20, FDP synthase yeast gene; FDP, farnesyl diphosphate; GGDP, geranylgeranyl diphosphate; GDP, geranyl diphosphate; IDP, isopentenyl diphosphate; LB, Luria Bertani; MS, Murashige and Skoog; NAA, Naphtaleneacetic acid; PVP, polyvinyl pyrrolidone; SBI, sterol biosynthesis inhibitor.  相似文献   

7.
Plant monoterpenoids belong to a large family of plant secondary metabolites with valuable applications in cosmetics and medicine. Their usual low levels and difficult purification justify the need for alternative fermentative processes for large-scale production. Geranyl diphosphate is the universal precursor of monoterpenoids. In yeast it occurs exclusively as an intermediate of farnesyl diphosphate synthesis. In the present study we investigated the potential use of Saccharomyces cerevisiae as an alternative engineering tool. The expression of geraniol synthase of Ocimum basilicum in yeast allowed a strong and specific excretion of geraniol to the growth medium, in contrast to mutants defective in farnesyl diphosphate synthase which excreted geraniol and linalool in similar amounts. A further increase of geraniol synthesis was obtained using yeast mutants defective in farnesyl diphosphate synthase. We also showed that geraniol synthase expression affects the general ergosterol pathway, but in a manner dependent on the genetic background of the strain.  相似文献   

8.
The impact of increased availability of phosphoenolpyruvate during shikimic acid biosynthesis has been examined in Escherichia coli K-12 constructs carrying plasmid-localized aroF(FBR) and tktA inserts encoding, respectively, feedback-insensitive 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase and transketolase. Strategies for increasing the availability of phosphoenolpyruvate were based on amplified expression of E. coli ppsA-encoded phosphoenolpyruvate synthase or heterologous expression of the Zymomonas mobilis glf-encoded glucose facilitator. The highest titers and yields of shikimic acid biosynthesized from glucose in 1 L fermentor runs were achieved using E. coli SP1.lpts/pSC6.090B, which expressed both Z. mobilis glf-encoded glucose facilitator protein and Z. mobilis glk-encoded glucose kinase in a host deficient in the phosphoenolpyruvate:carbohydrate phosphotransferase system. At 10 L scale with yeast extract supplementation, E. coli SP1.lpts/pSC6.090B synthesized 87 g/L of shikimic acid in 36% (mol/mol) yield with a maximum productivity of 5.2 g/L/h for shikimic acid synthesized during the exponential phase of growth.  相似文献   

9.
Mao Z  Chen RR 《Biotechnology progress》2007,23(5):1038-1042
Hyaluronan (HA) is a sugar polymer of a repeating disaccharide, beta1-3 D-N-acetylglucosamine (GlcNAc) beta1-4 D-glucuronic acid (GlcA). It finds applications in numerous biomedical procedures such as ophthalmic surgery and osteoarthritis treatment. Until recently, the only commercial sources were extraction of rooster combs and from fermentation of pathogenic Streptococcus. In this work, we demonstrate that metabolic engineering strategies enable the recombinant synthesis of hyaluronan in a safe microorganism. Agrobacterium sp. ATCC 31749 is a commercial production strain for a food polymer, Curdlan. A broad host range expression vector was successfully developed to express the 3 kb HA synthase gene from Pasteurella multocida, along with a kfiD gene encoding UDP-glucose dehydrogenase from Escherichia coli K5 strain. Coexpression of these two heterologous enzymes enables Agrobacterium to produce HA. Hyaluronan was accumulated up to 0.3 g/L in shaker flask cultivation. The molecular weight of the polymer from various Agrobacterium strains is in the range of 0.7-2 MD. To our knowledge, this is the first successful recombinant hyaluronan synthesis in a Gram-negative bacterium that naturally produces a food product. The ease of genetic modifications provides future opportunities to tailor properties of polymers for specific applications.  相似文献   

10.
The expression level of geranyl diphosphate synthase (GPPS) was suspected to play a key role for geraniol production in recombinant Escherichia coli harboring an entire mevalonate pathway operon and a geraniol synthesis operon. The expression of GPPS was optimized by using ribosomal binding sites (RBSs) designed to have different translation initiation rates (TIRs). The RBS strength in TIR window of 500 arbitrary unit (au)–1400 au for GPPS appears to be suitable for balancing the geraniol biosynthesis pathway in this study. With the TIR of 500 au, the highest production titer of geraniol was obtained at a level of 1119 mg/L, which represented a 6-fold increase in comparison with the previous titer of 183 mg/L. The TIRs of GPPS locating out of range of the optimal window (500–1400 au) caused significant decreases of cell growth and geraniol production. It was suspected to result from metabolic imbalance and plasmid instability in geraniol production by inappropriate expression level of GPP synthase. Our results collectively indicated GPPS as an important regulation point in balancing a recombinant geraniol synthesis pathway. The GPPS-based regulation approach could be applicable for optimizing microbial production of other monoterpenes.  相似文献   

11.
以青蒿素为基础的联合药物疗法 (ACTs) 被认为是目前治疗恶性疟疾的最有效方法。然而青蒿素供应不足且价格昂贵,限制了ACTs的广泛使用。采用基因工程手段构建异源类异戊二烯生物合成途径,利用大肠杆菌发酵能高效合成抗疟药青蒿素前体——紫穗槐-4,11-二烯。首先在大肠杆菌Escherichia coli DHGT7中引入人工合成的紫穗槐-4,11-二烯合酶基因,利用大肠杆菌内源的法尼基焦磷酸,成功获得了紫穗槐-4,11-二烯。为提高前体供给,引入粪肠球菌的甲羟戊酸途径,紫穗槐-4,11-二烯的产量提高了13  相似文献   

12.
乙酰乳酸合成酶基因的克隆与高效表达   总被引:1,自引:0,他引:1  
【目的】乙酰乳酸合成酶(ALS)是异丁醇生物合成中的关键酶,实现ALS的高效表达对调控异丁醇代谢途径有重要意义。【方法】根据GenBank中ALS的基因序列(alsS)设计引物,以枯草芽孢杆菌168基因组DNA为模板通过PCR扩增技术得到目标酶基因,目的片段全长为1 713 bp。将alsS连接到pET-30a(+)上,得到重组质粒pET-30a(+)-alsS,并在Escherichia coli BL2l(DE3)中实现表达。【结果】对表达条件进行了优化,获得最佳表达条件为:诱导温度30°C,诱导起始菌体OD600为0.6 0.8,诱导剂IPTG浓度为1 mmol/L,诱导时间为6 h。表达的乙酰乳酸合成酶大部分以可溶性形式存在于菌体内,优化后酶活可达到24.4 U/mL,比优化前提高了7.13倍。经HisTrapTMFF亲和层析后获得电泳纯的ALS,比活为95.2 U/mg。【结论】ALS的有效表达为在大肠杆菌体内构建异丁醇代谢途径打下了基础。  相似文献   

13.
Geraniol is a valuable monoterpene extensively used in the fragrance, food, and cosmetic industries. Increasing environmental concerns and supply gaps have motivated efforts to advance the microbial production of geraniol from renewable feedstocks. In this study, we first constructed a platform geraniol Escherichia coli strain by bioprospecting the key enzymes geranyl diphosphate synthase (GPPS) and geraniol synthase (GES) and selection of a host cell background. This strategy led to a 46.4-fold increase in geraniol titer to 964.3 mg/L. We propose that the expression level of eukaryotic GES can be further optimized through fusion tag evolution engineering. To this end, we manipulated GES to maximize flux towards the targeted product geraniol from precursor geranyl diphosphate (GPP) via the utilization of fusion tags. Additionally, we developed a high-throughput screening system to monitor fusion tag variants. This common plug-and-play toolbox proved to be a robust approach for systematic modulation of protein expression and can be used to tune biosynthetic metabolic pathways. Finally, by combining a modified E1* fusion tag, we achieved 2124.1 mg/L of geraniol in shake flask cultures, which reached 27.2% of the maximum theoretical yield and was the highest titer ever reported. We propose that this strategy has set a good reference for enhancing a broader range of terpenoid production in microbial cell factories, which might open new possibilities for the bio-production of other valuable chemicals.  相似文献   

14.
15.
Szkopinska A  Swiezewska E  Rytka J 《Biochimie》2006,88(3-4):271-276
Dolichol formation is examined in three Saccharomyces cerevisiae strains with mutations in the ERG20 gene encoding farnesyl diphosphate synthase (mevalonic acid pathway) and/or the ERG9 gene encoding squalene synthase (sterol synthesis pathway) differing in the amount and chain length of the polyisoprenoids synthesized. Our results suggest that the activities of two yeast cis-prenyltransferases Rer2p and Srt1p and polyprenol reductase are not co-regulated and that reductase may be the rate-limiting enzyme in dolichol synthesis if the amount of polyisoprenoids synthesized exceeds a certain level. We demonstrate that reductase preferentially acts on typical polyprenols with 13-18 isoprene residues but can reduce much longer polyprenols with even 32 isoprene residues.  相似文献   

16.
Transformation of Saccharomyces cerevisiae by yeast expression plasmids bearing the Escherichia coli xylose isomerase gene leads to production of the protein. Western blotting (immunoblotting) experiments show that immunoreactive protein chains which comigrate with the E. coli enzyme are made in the transformant strains and that the amount produced parallels the copy number of the plasmid. When comparable amounts of immunologically cross-reactive xylose isomerase protein made in E. coli or S. cerevisiae were assayed for enzymatic activity, however, the yeast protein was at least 10(3)-fold less active.  相似文献   

17.
Transformation of Saccharomyces cerevisiae by yeast expression plasmids bearing the Escherichia coli xylose isomerase gene leads to production of the protein. Western blotting (immunoblotting) experiments show that immunoreactive protein chains which comigrate with the E. coli enzyme are made in the transformant strains and that the amount produced parallels the copy number of the plasmid. When comparable amounts of immunologically cross-reactive xylose isomerase protein made in E. coli or S. cerevisiae were assayed for enzymatic activity, however, the yeast protein was at least 10(3)-fold less active.  相似文献   

18.
Expression systems for the heterologous expression of Drosophila melanogaster alcohol dehydrogenase (ADH) in Saccharomyces cerevisiae have been designed, analyzed and compared. Four different yeast/Escherichia coli shuttle vectors were constructed and used to transform four different yeast strains. Expression was detectable in ADH- yeast strains, from either a constitutive promoter, yeast ADH1 promoter (ADCp), or a regulated promoter, yeast GALp. The highest amount of D. melanogaster ADH was obtained from a multicopy plasmid with the D. melanogaster Adh gene expressed constitutively under the control of yeast ADCp promoter. The D. melanogaster enzyme was produced in cell extracts, as assessed by Coomassie blue staining and Western blotting after polyacrylamide-gel electrophoresis and it was fully active and able to complement the yeast ADH deficiency. Results show that D. melanogaster ADH subunits synthesized in yeast are able to assemble into functional dimeric forms. The synthesized D. melanogaster ADH represents up to 3.5% of the total extracted yeast protein.  相似文献   

19.
20.
A geraniol-synthase gene from Cinnamomum tenuipilum   总被引:2,自引:0,他引:2  
Yang T  Li J  Wang HX  Zeng Y 《Phytochemistry》2005,66(3):285-293
Geraniol may accumulate up to 86-98% of the leaf essential oils in geraniol chemotypes of the evergreen camphor tree Cinnamomum tenuipilum. A similarity-based cloning strategy yielded a cDNA clone that appeared to encode a terpene synthase and which could be phylogenetically grouped within the angiosperm monoterpene synthase/subfamily. After its expression in Escherichia coli and enzyme assay with prenyl diphosphates as substrates, the enzyme encoded by the putative C. tenuipilum monoterpene synthase gene was shown to specifically convert geranyl diphosphate to geraniol as a single product by GC-MS analysis. Biochemical characterization of the partially purified recombinant protein revealed a strong dependency for Mg2+ and Mn2+, and an apparent Michaelis constant of 55.8 microM for geranyl diphosphate. Thus, a new member of the monoterpene synthase family was identified and designated as CtGES. The genome contains a single copy of CtGES gene. Expression of CtGES was exclusively observed in the geraniol chemotype of C. tenuipilum. Furthermore, in situ hybridization analysis demonstrated that CtGES mRNA was localized in the oil cells of the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号