首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
目的:探讨不同压力血流限制(BFR)结合低强度抗阻训练对男性大学生下肢肌肉及心肺功能影响。方法:27名健康男性大学生随机分为对照组(C组)、低压组(L组)、高压组(H组),每组9人,受试者大腿近端放置可充气非弹性袖带后分别进行无压力、120 mmHg、180 mmHg,进行20%1次重复最大力量(1RM)强度的负重半蹲训练,比较每周3次,共12周训练前后及各组间股直肌、股中肌肌肉厚度(MTH)、相对伸膝峰值力矩(r M)、峰值功率(P)、相对最大摄氧量(rVO2max)、每搏输出量(SV)、心输出量(CO)、射血分数(EF)等指标的变化。结果:与训练前比较,12周训练后L组和H组股直肌MTH、股中肌MTH、rM、rVO2max、SV、EF均显著提高(P<0.05,P<0.01),且显著高于训练后C组(P<0.05,P<0.01),而L组与H组之间无显著性差异。结论:12周120 mmHg或180 mmHg压力下20%1RM强度BFR训练均可有效提高男性大学生股四头肌肌肉厚度及力量并显著提高心肺功能。  相似文献   

2.
Animal studies suggest that nitric oxide (NO) plays an important role in buffering short-term arterial pressure variability, but data from humans addressing this hypothesis are scarce. We evaluated the effects of NO synthase (NOS) inhibition on arterial blood pressure (BP) variability in eight healthy subjects in the supine position and during 60 degrees head-up tilt (HUT). Systemic NOS was blocked by intravenous infusion of N(G)-monomethyl-L-arginine (L-NMMA). Electrocardiogram and beat-by-beat BP in the finger (Finapres) were recorded continuously for 6 min, and brachial cuff BP was recorded before and after L-NMMA in each body position. BP and R-R variability and their transfer functions were quantified by power spectral analysis in the low-frequency (LF; 0.05-0.15 Hz) and high-frequency (HF; 0.15-0.35 Hz) ranges. L-NMMA infusion increased supine BP (systolic, 109 +/- 4 vs. 122 +/- 3 mmHg, P = 0.03; diastolic, 68 +/- 2 vs. 78 +/- 3 mmHg, P = 0.002), but it did not affect supine R-R interval or BP variability. Before L-NMMA, HUT decreased HF R-R variability (P = 0.03), decreased transfer function gain (LF, 12 +/- 2 vs. 5 +/- 1 ms/mmHg, P = 0.007; HF, 18 +/- 3 vs. 3 +/- 1 ms/mmHg, P = 0.002), and increased LF BP variability (P < 0.0001). After L-NMMA, HUT resulted in similar changes in BP and R-R variability compared with tilt without L-NMMA. Increased supine BP after L-NMMA with no effect on BP variability during HUT suggests that tonic release of NO is important for systemic vascular tone and thus steady-state arterial pressure, but NO does not buffer dynamic BP oscillations in humans.  相似文献   

3.
This study was designed to investigate the importance of vagal cardiac modulation in arterial blood pressure (ABP) stability before and after glycopyrrolate or atropine treatment. Changes in R-R interval (RRI) and ABP were assessed in 10 healthy young (age, 22 +/- 1.8 yr) volunteers during graded lower body negative pressure (LBNP) before and after muscarinic cholinergic (MC) blockade. Transient hypertension was induced by phenylephrine (1 microg/kg body wt), whereas systemic hypotension was induced by bilateral thigh cuff deflation after a 3-min suprasystolic occlusion. Power spectral densities of systolic [systolic blood pressure (SBP)] and diastolic ABP variability were examined. Both antimuscarinic agents elicited tachycardia similarly without significantly affecting baseline ABP. The increase in SBP after phenylephrine injection (+14 +/- 2 mmHg) was significantly augmented with atropine (+26 +/- 2 mmHg) or glycopyrrolate (+27 +/- 3 mmHg) and associated with a diminished reflex bradycardia. The decrease in SBP after cuff deflation (-9.2 +/- 1.2 mmHg) was significantly greater after atropine (-15 +/- 1 mmHg) or glycopyrrolate (-14 +/- 1 mmHg), with abolished reflex tachycardia. LBNP significantly decreased both SBP and RRI. However, after antimuscarinic agents, the reduction in SBP was greater (P < 0.05) and was associated with less tachycardia. Antimuscarinic agents reduced (P < 0.05) the low-frequency (LF; 0.04-0.12 Hz) power of ABP variability at rest. The LF SBP oscillation was significantly augmented during LBNP, which was accentuated (P < 0.05) after antimuscarinic agents and was correlated (r = -0.79) with the decrease in SBP. We conclude that antimuscarinic agents compromised ABP stability by diminishing baroreflex sensitivity, reflecting the importance of vagal cardiac function in hemodynamic homeostasis. The difference between atropine and glycopyrrolate was not significant.  相似文献   

4.
Microgravity or simulated microgravity induces acute and chronic cardiovascular responses, whose mechanism is pivotal for understanding of physiological adaptation and pathophysiological consequences. We investigated hemodynamic responses of conscious Wistar rats to 45? head-down tilt (HDT) for 7 days. Arterial blood pressure (BP) was recorded by telemetry. Heart rate (HR), spectral properties and the spontaneous baroreflex sensitivity (sBRS) were calculated. Head-up tilt (HUT) was applied for 2 h before and after HDT to assess the degree of any possible cardiovascular deconditioning. Horizontal control BP and HR were 112.5+/-2.8 mmHg and 344.7+/-10 bpm, respectively. HDT elicited an elevation in BP and HR by 8.3 % and 8.8 %, respectively, in less than 1 h. These elevations in BP and HR were maintained for 2 and 3 days, respectively, and then normalized. Heart rate variability was unchanged, while sBRS was permanently reduced from the beginning of HDT (1.01+/-0.08 vs. 0.74+/-0.05 ms/mmHg). HUT tests before and after HDT resulted in BP elevations (6.9 vs. 11.6 %) and sBRS reduction (0.44 vs. 0.37 ms/mmHg), respectively. The pressor response during the post-HDT HUT test was accompanied by tachycardia (13.7 %). In conclusion, chronic HDT does not lead to symptoms of cardiovascular deconditioning. However the depressed sBRS and tachycardic response seen during the post-HDT HUT test may indicate disturbances in cardiovascular control.  相似文献   

5.
Coexistence of chronic kidney disease (CKD) and heart failure (HF) in humans is associated with poor outcome. We hypothesized that preexistent CKD worsens cardiac outcome after myocardial infarction, and conversely that ensuing HF worsens progression of CKD. Subtotally nephrectomized (SNX) or sham-operated (CON) rats were subjected to coronary ligation (CL) or sham surgery in week 9 to realize four groups: CON, SNX, CON + CL, and SNX + CL. Blood pressure and renal function were measured in weeks 8, 11, 13, and 15. In week 16, cardiac hemodynamics and end-organ damage were assessed. Blood pressure was significantly lower in SNX + CL vs. SNX. Despite this, glomerulosclerosis was more severe in SNX + CL vs. SNX. Two weeks after CL, SNX + CL had more cardiac dilatation compared with CON + CL (end-diastolic volume index: 0.28 ± 0.04 vs. 0.19 ± 0.03 ml/100 g body wt; mean ± SD, P < 0.001), although infarct size was similar. During follow-up in SNX + CL, ejection fraction declined. Mortality was only observed in SNX + CL (2 out of 9). In SNX + CL, end-diastolic pressure (18 ± 4 mmHg) and tau (29 ± 9 ms), the time constant of active relaxation, were significantly higher compared with SNX (13 ± 3 mmHg, 20 ± 4 ms; P < 0.01) and CON + CL (11 ± 5 mmHg, 17 ± 2 ms; P < 0.01). The diameter of small arterioles in the myocardium was significantly decreased in SNX + CL vs. CON + CL (P < 0.01). Urinary excretion of NO metabolites was significantly lower in SNX + CL compared with both CL and SNX. This study demonstrates the existence of more heart and more kidney damage in a new model of combined CKD and HF than in the individual models. Such enhanced damage appears to be separate from systemic hemodynamic changes. Reduced nitric oxide availability may have played a role in both worsened glomerulosclerosis and cardiac diastolic function and appears to be a connector in the cardiorenal syndrome.  相似文献   

6.
We determined the independent and interactive influences of aging and habitual endurance exercise on calf venous compliance in humans. We tested the hypotheses that calf venous compliance is 1) reduced with age in sedentary and endurance-trained men, and 2) elevated in young and older endurance-trained compared with age-matched sedentary men. We studied 8 young (28 +/- 1 yr) and 8 older (65 +/- 1) sedentary, and 8 young (27 +/- 1) and 8 older (63 +/- 2) endurance-trained men. Calf venous compliance was measured in supine subjects by inflating a venous collecting cuff, placed above the knee, to 60 mmHg for 8 min and then decreasing cuff pressure at 1 mmHg/s to 0 mmHg. Calf venous compliance was determined using the first derivative of the pressure-volume relation during cuff pressure reduction (compliance = beta(1) + 2. beta(2). cuff pressure). Calf venous compliance was reduced with age in sedentary (approximately 40%) and endurance-trained men (approximately 20%) (both P < 0.01). Furthermore, calf venous compliance was approximately 70-120% greater in endurance-trained compared with age-matched sedentary men and approximately 30% greater in older endurance-trained compared with young sedentary men (both P < 0.01). These data indicate that calf venous compliance is reduced with age in sedentary and endurance-trained men, but compliance is better preserved in endurance-trained men.  相似文献   

7.
The cardiorespiratory responses were examined in yellowtail, Seriola quinqueradiata exposed to two levels of hypercapnia (seawater equilibrated with a gas mixture containing 1% CO(2) (water PCO(2) = 7 mmHg) or 5% CO(2) (38 mmHg)) for 72 hr at 20 degrees C. Mortality was 100% within 8 hr at 5% CO(2), while no fish died at 1% CO(2). No cardiovascular variables (cardiac output, Q; heart rate, HR; stroke volume, SV and arterial blood pressure, BP) significantly changed from pre-exposure values during exposure to 1% CO(2). Arterial CO(2) partial pressure (PaCO(2)) significantly increased (P < 0.05), reaching a new steady-state level after 3 hr. Arterial blood pH (pHa) decreased initially (P < 0.05), but was subsequently restored by elevation of plasma bicarbonate ([HCO(3)(-)]). Arterial O(2) partial pressure (PaO(2)), oxygen content (CaO(2)), and hematocrit (Hct) were maintained throughout the exposure period. In contrast, exposure to 5% CO(2) dramatically reduced Q (P < 0.05) through decreasing SV (P < 0.05), although HR did not change. BP was transiently elevated (P < 0.05), followed by a precipitous fall before death. The pHa was restored incompletely despite a significant increase in [HCO(3)(-)]. PaO(2) decreased only shortly before death, whereas CaO(2) kept elevated due to a large increase in Hct (P < 0.05). We tentatively conclude that cardiac failure is a primary physiological disorder that would lead to death of fish subjected to high environmental CO(2) pressures.  相似文献   

8.
迷走神经和交感神经系统不同活动状态对心率变异性的影响   总被引:11,自引:0,他引:11  
Li L  Zhu JW  Cao YX  Li P 《生理学报》1998,50(5):519-524
实验在氯醛糖加氨基甲酸乙酯麻醉的新西兰兔上进行。记录血压、心率、心电图并对心电R-R间期(RRI)作功率谱密度(PSD)分析。以单调性电刺激和低频率的波动性电刺激分别刺激减压神经、疑核和右侧迷走神经外周端,观察到低频率的波动性刺激对增加PSD中低频成分(LF)的作用比单调性电刺激更大(P〈0.05)。注射新福林仅在头一个256个心动周期时间内引起总变异性(TV)、LF、PSD中高频成分(HF)。L  相似文献   

9.
The synchronization of cardiac and locomotor rhythms has been suggested to enhance the efficiency of arterial delivery to active muscles during rhythmic exercise, but direct evidence showing such a functional role has not been provided. In this study, we tested the hypothesis that the heartbeat is coupled with intramuscular pressure (IMP) changes so as to time the delivery of blood through peripheral tissues when the IMP is lower. To this end, we developed a computer-controlled, dynamic, thigh cuff occlusion device that enables bilateral thigh cuffs to repeatedly inflate and deflate, one side after the other, to simulate rhythmic IMP changes during bipedal locomotion. Nine healthy subjects were examined, and three different occlusion pressures (50, 80, and 120 mmHg) were applied separately to the thigh cuffs of normal subjects while they were sitting. Alternate occlusions of the bilateral thigh cuffs administered at the frequency of the mean heart rate produced significant phase synchronization between the cardiac and cuff-occlusion rhythms when 120 mmHg pressure was applied. However, synchronization was not observed when the occlusion pressure was 50 or 80 mmHg. During synchronization, heartbeats were most likely to occur in phases that did not include overlap between the peak arterial flow velocity in the thigh and elevated cuff pressure. We believe that phase synchronization occurs so that the cardiac cycle is timed to deliver blood through the lower legs when IMP is not maximal. If this can be extrapolated to natural locomotion, synchronization between cardiac and locomotor activities may be associated with the improved perfusion of exercising muscles.  相似文献   

10.
The aim of the present study was to investigate the effects of a pretest redistribution of blood volume and of a change in the neurohumoral condition on the blood pressure (BP) and heart rate (HR) responses to three commonly used cardiovascular reflex tests: standing up, forced breathing, and the Valsalva maneuver in 10 healthy male subjects. Base-line conditions were altered by changing posture and the duration of rest preceding the test stimulus. A continuous recording of finger BP was obtained noninvasively by a Finapres. The main observations from this study are with respect to standing up: lengthening the period of preceding rest from 1 to 20 min enlarges the initial BP (systolic/diastolic) decrease (from 8 +/- 10/9 +/- 4 to 27 +/- 8/19 +/- 4 mmHg, P less than 0.01) and the subsequent BP overshoot (from 17 +/- 10/12 +/- 7 to 31 +/- 10/18 +/- 7 mmHg, P less than 0.05); to forced breathing: inspiratory-expiratory changes in BP but not in HR are larger in the upright posture (P less than 0.05); and to the Valsalva maneuver: change in posture from supine to standing increases the phase II BP decrease (from 18 +/- 12/8 +/- 6 to 45 +/- 16/21 +/- 9 mmHg), phase IV systolic BP overshoot (from 26 +/- 16 to 71 +/- 17 mmHg), delta HRmax (from 30 +/- 10 to 47 +/- 12 beats/min), and the Valsalva ratio (HRmax/HRmin), from 2.0 +/- 0.3 to 2.6 +/- 0.7, all significant at P less than 0.01.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Occasionally, lifting of a heavy weight leads to dizziness and even to fainting, suggesting that, especially in the standing position, expiratory straining compromises cerebral perfusion. In 10 subjects, the middle cerebral artery mean blood velocity (V(mean)) was evaluated during a Valsalva maneuver (mouth pressure 40 mmHg for 15 s) both in the supine and in the standing position. During standing, cardiac output decreased by 16 +/- 4 (SE) % (P < 0.05), and at the level of the brain mean arterial pressure (MAP) decreased from 89 +/- 2 to 78 +/- 3 mmHg (P < 0.05), as did V(mean) from 73 +/- 4 to 62 +/- 5 cm/s (P < 0.05). In both postures, the Valsalva maneuver increased central venous pressure by approximately 40 mmHg with a nadir in MAP and cardiac output that was most pronounced during standing (MAP: 65 +/- 6 vs. 87 +/- 3 mmHg; cardiac output: 37 +/- 3 vs. 57 +/- 4% of the resting value; P < 0.05). Also, V(mean) was lowest during the standing Valsalva maneuver (39 +/- 5 vs. 47 +/- 4 cm/s; P < 0.05). In healthy individuals, orthostasis induces an approximately 15% reduction in middle cerebral artery V(mean) that is exaggerated by a Valsalva maneuver performed with 40-mmHg mouth pressure to approximately 50% of supine rest.  相似文献   

12.
Stimulation of endogenous opiate secretion worsens circulatory dysfunction in several forms of shock, in part by inhibiting sympathetic activity. To investigate whether endogenous opiates have a similar effect in chronic heart failure (HF), we measured beta-endorphin concentrations and hemodynamic responses to naloxone infusion (2 mg/kg bolus + 2 mg.kg-1 x h-1) in six control (C) dogs and eight dogs with low-output HF produced by 3 wk of rapid ventricular pacing. The dogs with HF exhibited reduced arterial blood pressure (C, 123 +/- 4 vs. HF, 85 +/- 7 mmHg; P < 0.01) and cardiac outputs (C, 179 +/- 14 vs. HF, 76 +/- 2 ml.min-1 x kg-1; P < 0.01) and elevated plasma norepinephrine concentrations (C, 99 +/- 12 vs. HF, 996 +/- 178 pg/ml; P < 0.01) but normal beta-endorphin concentrations (C, 30 +/- 11 vs. HF, 34 +/- 12 pg/ml; P = NS). Naloxone produced similar transitory increases in blood pressure (C, 14 +/- 5 vs. HF, 26 +/- 25%) and cardiac output (C, 37 +/- 13 vs. HF, 22 +/- 15%) in both groups (both P = NS). No significant changes in norepinephrine concentration or systemic vascular resistance were observed in either group. These findings suggest that beta-endorphin secretion does not exacerbate circulatory dysfunction in chronic heart failure.  相似文献   

13.
Women have a greater incidence of orthostatic intolerance than men. We hypothesized that this difference is related to hemodynamic effects on regulation of cardiac filling rather than to reduced responsiveness of vascular resistance during orthostatic stress. We constructed Frank-Starling curves from pulmonary capillary wedge pressure (PCWP), stroke volume (SV), and stroke index (SI) during lower body negative pressure (LBNP) and saline infusion in 10 healthy young women and 13 men. Orthostatic tolerance was determined by progressive LBNP to presyncope. LBNP tolerance was significantly lower in women than in men (626.8 +/- 55.0 vs. 927.7 +/- 53.0 mmHg x min, P < 0.01). Women had steeper maximal slopes of Starling curves than men whether expressed as SV (12.5 +/- 2.0 vs. 7.1 +/- 1.5 ml/mmHg, P < 0.05) or normalized as SI (6.31 +/- 0.8 vs. 4.29 +/- 0.6 ml.m-2.mmHg-1, P < 0.05). During progressive LBNP, PCWP dropped quickly at low levels, and reached a plateau at high levels of LBNP near presyncope in all subjects. SV was 35% and SI was 29% lower in women at presyncope (both P < 0.05). Coincident with the smaller SV, women had higher heart rates but similar mean arterial pressures compared with men at presyncope. Vascular resistance and plasma norepinephrine concentration were similar between genders. We conclude that lower orthostatic tolerance in women is associated with decreased cardiac filling rather than reduced responsiveness of vascular resistance during orthostatic challenges. Thus cardiac mechanics and Frank-Starling relationship may be important mechanisms underlying the gender difference in orthostatic tolerance.  相似文献   

14.
实验在氯醛糖加氨基甲酸乙酯麻醉的新西兰兔上进行。记录血压,心率,心电图和心率变异性频谱分析。电刺激减压神经,疑核和右侧迷走神经外周端,均引起心率和血压下降,总变异性,低频成分,高频成分,LF/HF比值和极代频成分增大。静脉注射阿托品可使上述反应显著减小,而静脉注射心得安仅可阻断DN和NA所致LF的增大。  相似文献   

15.
Effects of cardiac specific overexpression of beta(2)-adrenergic receptors (beta(2)-AR) on the development of heart failure (HF) were studied in wild-type (WT) and transgenic (TG) mice following myocardial infarction (MI) by coronary artery occlusion. Animals were studied by echocardiography at weeks 7 to 8 and by catheterization at week 9 after surgery. Post-infarct mortality, due to HF or cardiac rupture, was not different among WT mice, and there was no difference in infarct size (IS). Compared with the sham-operated group (all P < 0.01), WT mice with moderate (<36%) and large (>36%) IS developed lung congestion, cardiac hypertrophy, left ventricular (LV) dilatation, elevated LV end-diastolic pressure (LVEDP), and suppressed maximal rate of increase of LV pressure (LV dP/dt(max)) and fractional shortening (FS). Whereas changes in organ weights and echo parameters were similar to those in infarcted WT groups, TG mice had significantly higher levels of LV contractility in both moderate (dP/dt(max) 4,862 +/- 133 vs. 3,694 +/- 191 mmHg/s) and large IS groups (dP/dt(max) 4,556 +/- 252 vs. 3,145 +/- 312 mmHg/s, both P < 0.01). Incidence of pleural effusion (36% vs. 85%, P < 0.05) and LVEDP levels (6 +/- 0.3 vs. 9 +/- 0.8 mmHg, P < 0.05) were also lower in TG than in WT mice with large IS. Thus beta(2)-AR overexpression preserved LV contractility following MI without adverse consequence.  相似文献   

16.
Time–frequency (T–F) analysis is often used to study the non-stationary cardiovascular oscillations such as heart rate and blood pressure variabilities in dynamic situations. This study intends to use the T–F recursive autoregressive technique to investigate variability in pulse transit time (PTT), which is a cardiovascular parameter of emerging interest due to its potential to estimate blood pressure non-invasively, continuously and without a cuff. Recent studies suggest that PTT is not only related to systolic blood pressure (SBP) but also to heart rate. Therefore, in this study, variability of PTT is analyzed together with the variabilities of R–R interval (RRI) from electrocardiogram and beat-to-beat SBP on 9 normotensive subjects before and shortly after three successive bouts of treadmill exercise. The results showed that both low frequency (LF) and high frequency (HF) components were found in the spectra of RRI, SBP and PTT in the 5-min recordings collected before and after exercise. Compared to the baseline, a decrease in the power of the HF component of RRI followed by an increase in its LF component indicated firstly a vagal withdrawal and then sympathetic activity enhancement after successive bouts of exercise. On the other hand, although changes in the LF and HF components of PTT were more similar to those of SBP than of RRI, the LF/HF ratio of SBP was almost 4 times higher than that of PTT. Based on the results, it is therefore suggested that the relationship between SBP and PTT is frequency-dependent.  相似文献   

17.
Omapatrilat (OMP) is a novel mixed inhibitor of angiotensin-converting enzyme (ACE) and neutral endopeptidase 24.11 (NEP), the enzyme that metabolizes natriuretic peptides. Congestive heart failure (CHF) is characterized by excessive sodium retention, attributed to both an excessive effect of angiotensin II and diminished responsiveness to natriuretic peptides. In this study, we examined the acute and chronic renal and cardiac effects of OMP in rats with compensated [urinary sodium excretion (UNaV) > 1,200 microeq/day] and decompensated (UNaV < 100 microeq/day) CHF, induced by a surgical aortocaval fistula (ACF). Bolus injection of OMP (10 mg/kg) to sham controls produced significant diuretic and natriuretic responses [UNaV increased from 0.67 +/- 0.19 to 3.27 +/- 1.35 microeq/min, P < 0.05; fractional sodium excretion (FENa) increased from 0.23 +/- 0.06 to 0.95 +/- 0.34%, P < 0.01] despite a significant decline in blood pressure (BP). Rats with compensated CHF displayed blunted diuresis and natriuresis to this dose of OMP but a significant decrease in BP. However, in rats with decompensated CHF, OMP induced significant natriuresis (FENa increased from 0.18 +/- 0.15 to 0.82 +/- 0.26%, P < 0.05) despite a further decrease in BP (from 90 +/- 9 to 71 +/- 6 mmHg, P < 0.01). Two weeks after ACF, the heart/body weight ratio was significantly greater in rats with CHF than controls (0.51 +/- 0.026 vs. 0.30 +/- 0.004%, P < 0.0001), and UNaV was significantly lower. Immediate or late (1 or 6 days after ACF) OMP treatment in the drinking water (140 mg/l) reduced cardiac hypertrophy to 0.41-0.43% (P < 0.01) and induced natriuresis. These results suggest that OMP improves both sodium balance and cardiac remodeling and might be advantageous to ACE inhibitors for the treatment of decompensated CHF.  相似文献   

18.
The use of symptoms generated by head up tilt (HUT) is not a useful tool in identifying chronic fatigue syndrome (CFS). We investigated whether heart rate variability (HRV) assessed early during HUT might be useful. A sample of 46 female subjects (24 with CFS and 22 sedentary, age-matched healthy controls; CON) who had exhibited no difference in time to syncope during tilt was examined for HRV responses to 10 min of 70 degrees HUT after 5 min of baseline in the supine position. HRV data were analyzed by the method of coarse graining spectral analysis. Variables compared between groups included mean and standard deviation (SD(RRI)) of RR intervals (RRI), amplitudes of low- (A(LF); 0.04-0.15 Hz) and high-frequency (A(HF); >0.15 Hz) harmonic as well as aperiodic, fractal (A(FR); 1/f(beta)) spectral components, the spectral exponent beta, and the difference in these values between baseline and HUT for each subject. In the supine baseline, only mean RRI was significantly (P < 0.01) lower in CFS than in CON. During HUT, however, mean RRI (P < 0.01), SD(RRI) (P < 0.01), A(HF) (P < 0.05), and A(FR) (P < 0.01) were significantly lower in CFS than in CON. When the difference in values between baseline and HUT for each subject was examined, only the difference for A(FR) (deltaA(FR)) was significantly (P < 0.01) lower in CFS than in CON, suggesting that A(FR)is a disease-specific response of HRV to HUT. When a cut-off level was set to deltaA(FR) = -2.7 msec, the sensitivity and the specificity in differentiating CFS from controls were 90% and 72%, respectively. The data suggest that a decrease in aperiodic fractal component of HRV in response to HUT can be used to differentiate patients with CFS from CON.  相似文献   

19.
The purpose of this study was to investigate the acute blood pressure (BP) and hemodynamic effects of sodium chloride (3% intravenous solution). Although many studies link a change in dietary sodium to a change in BP, few consider the effects of sodium concentration in the blood on BP. We hypothesized that an intravenous sodium load would increase BP, and we quantified alterations in cardiac output (Qc) and peripheral vascular resistance (PVR). Thirteen subjects (age 27 +/- 2 yr) underwent a 60-min 3% saline infusion (0.15 ml.kg(-1).min(-1)). BP was assessed on a beat-to-beat basis with a Finometer, Qc was assessed via the CO(2) rebreathing technique, and PVR was derived. Serum sodium and osmolality increased, and hematocrit declined during the infusion (ANOVA, P < 0.01). Mean arterial pressure (MAP) increased continuously during the infusion from 81.8 +/- 3.4 to 91.6 +/- 3.6 mmHg (ANOVA, P < 0.01). BP responsiveness to sodium was expressed as the slope of the serum sodium-MAP relationship and averaged 1.75 +/- 0.34 mmHg.mmol(-1).l(-1). BP responsiveness to the volume change was expressed as the slope of the hematocrit-MAP relationship and averaged -2.2 +/- 0.35 mmHg/%. The early change in MAP was mediated by an increase in Qc and the late change by an increase in PVR (P < 0.05), corresponding to a 30% increase in plasma norepinephrine. In conclusion, an acute infusion of hypertonic saline was effective in increasing BP, and both sodium and volume appear to be involved in this increase; acute BP responsiveness to serum sodium can be quantified using a MAP-sodium plot.  相似文献   

20.
Respiratory muscle training (RMT) improves functional capacity in chronic heart-failure (HF) patients, but the basis for this improvement remains unclear. We evaluate the effects of RMT on the hemodynamic and autonomic function, arterial baroreflex sensitivity (BRS), and respiratory mechanics in rats with HF. Rats were assigned to one of four groups: sedentary sham (n = 8), trained sham (n = 8), sedentary HF (n = 8), or trained HF (n = 8). Trained animals underwent a RMT protocol (30 min/day, 5 day/wk, 6 wk of breathing through a resistor), whereas sedentary animals did not. In HF rats, RMT had significant effects on several parameters. It reduced left ventricular (LV) end-diastolic pressure (P < 0.01), increased LV systolic pressure (P < 0.01), and reduced right ventricular hypertrophy (P < 0.01) and pulmonary (P < 0.001) and hepatic (P < 0.001) congestion. It also decreased resting heart rate (HR; P < 0.05), indicating a decrease in the sympathetic and an increase in the vagal modulation of HR. There was also an increase in baroreflex gain (P < 0.05). The respiratory system resistance was reduced (P < 0.001), which was associated with the reduction in tissue resistance after RMT (P < 0.01). The respiratory system and tissue elastance (Est) were also reduced by RMT (P < 0.01 and P < 0.05, respectively). Additionally, the quasistatic Est was reduced after RMT (P < 0.01). These findings show that a 6-wk RMT protocol in HF rats promotes an improvement in hemodynamic function, sympathetic and vagal heart modulation, arterial BRS, and respiratory mechanics, all of which are benefits associated with improvements in cardiopulmonary interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号