首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post-translational histone modifications play important roles in regulating gene expression programs, which in turn determine cell fate and lineage commitment during development. One such modification is histone ubiquitination, which primarily targets histone H2A and H2B. Although ubiquitination of H2A and H2B has been generally linked to gene silencing and gene activation, respectively, the functions of histone ubiquitination during eukaryote development are not well understood. Here, we identified USP12 and USP46 as histone H2A and H2B deubiquitinases that regulate Xenopus development. USP12 and USP46 prefer nucleosomal substrates and deubiquitinate both histone H2A and H2B in vitro and in vivo. WDR48, a WD40 repeat-containing protein, interacts with USP12 and USP46 and is required for the histone deubiquitination activity. Overexpression of either gene leads to gastrulation defects without affecting mesodermal cell fate, whereas knockdown of USP12 in Xenopus embryos results in reduction of a subset of mesodermal genes at gastrula stages. Immunohistochemical staining and chromatin immunoprecipitation assays revealed that USP12 regulates histone deubiquitination in the mesoderm and at specific gene promoters during Xenopus development. Taken together, this study identifies USP12 and USP46 as histone deubiquitinases for H2A and H2B and reveals that USP12 regulates Xenopus development during gastrula stages.  相似文献   

2.
3.
4.
5.
The study of histone modifications and their interaction with effector modules/proteins has attracted increasing attention in recent years. Accumulating evidence indicates that epigenetic regulation, which involves post-translational modification on histones and DNAs or the participation of RNAs, plays an important role in many cellular processes. Histone modifications can function individually but are also capable of functioning combinatorially as a pattern. Recently, much more attention has focused on interpreting combined histone patterns by their downstream effectors. Structure/function-based studies on paired module-mediated histone cross-talk have greatly enhanced our understanding of the plasticity of the "histone code" hypothesis.  相似文献   

6.
7.
8.
9.
10.
Absent, small, or homeotic disc1 (Ash1) is a trithorax group histone methyltransferase that is involved in gene activation. Although there are many known histone methyltransferases, their regulatory mechanisms are poorly understood. Here, we present the crystal structure of the human ASH1L catalytic domain, showing its substrate binding pocket blocked by a loop from the post-SET domain. In this configuration, the loop limits substrate access to the active site. Mutagenesis of the loop stimulates ASH1L histone methyltransferase activity, suggesting that ASH1L activity may be regulated through the loop from the post-SET domain. In addition, we show that human ASH1L specifically methylates histone H3 Lys-36. Our data implicate that there may be a regulatory mechanism of ASH1L histone methyltransferases.  相似文献   

11.
12.
Retinoblastoma-binding protein 1 (RBBP1), also named AT-rich interaction domain containing 4A (ARID4A), is a tumor and leukemia suppressor involved in epigenetic regulation in leukemia and Prader-Willi/Angelman syndromes. Although the involvement in epigenetic regulation is proposed to involve its chromobarrel and/or Tudor domains because of their potential binding to methylated histone tails, the structures of these domains and their interactions with methylated histone tails are still uncharacterized. In this work, we first found that RBBP1 contains five domains by bioinformatics analysis. Three of the five domains, i.e. chromobarrel, Tudor, and PWWP domains, are Royal Family domains, which potentially bind to methylated histone tails. We further purified these domains and characterized their interaction with methylated histone tails by NMR titration experiments. Among the three Royal Family domains, only the chromobarrel domain could recognize trimethylated H4K20 (with an affinity of ~3 mm), as well as recognizing trimethylated H3K9, H3K27, and H3K36 (with lower affinities). The affinity could be further enhanced up to 15-fold by the presence of DNA. The structure of the chromobarrel domain of RBBP1 determined by NMR spectroscopy has an aromatic cage. Mutagenesis analysis identified four aromatic residues of the cage as the key residues for methylated lysine recognition. Our studies indicate that the chromobarrel domain of RBBP1 is responsible for recognizing methylated histone tails in chromatin remodeling and epigenetic regulation, which presents a significant advance in our understanding of the mechanism and relationship between RBBP1-related gene suppression and epigenetic regulation.  相似文献   

13.
It is well established that chromatin is a destination for signal transduction, affecting many DNA-templated processes. Histone proteins in particular are extensively post-translationally modified. We are interested in how the complex repertoire of histone modifications is coordinately regulated to generate meaningful combinations of "marks" at physiologically relevant genomic locations. One important mechanism is "cross-talk" between pre-existing histone post-translational modifications and enzymes that subsequently add or remove modifications on chromatin. Here, we use chemically defined "designer" nucleosomes to investigate novel enzymatic cross-talk relationships between the most abundant histone ubiquitylation sites, H2AK119ub and H2BK120ub, and two important histone methyltransferases, Dot1L and PRC2. Although the presence of H2Bub in nucleosomes greatly stimulated Dot1L methylation of H3K79, we found that H2Aub did not influence Dot1L activity. In contrast, we show that H2Aub inhibited PRC2 methylation of H3K27, but H2Bub did not influence PRC2 activity. Taken together, these results highlight how the position of nucleosome monoubiquitylation affects the specificity and direction of cross-talk with enzymatic activities on chromatin.  相似文献   

14.
15.
16.
Histone lysine methylation is a dynamic process that plays an important role in regulating chromatin structure and gene expression. Recent studies have identified Jhd2, a JmjC domain-containing protein, as an H3K4-specific demethylase in budding yeast. However, important questions regarding the regulation and functions of Jhd2 remain unanswered. In this study, we show that Jhd2 has intrinsic activity to remove all three states of H3K4 methylation in vivo and can dynamically associate with chromatin to modulate H3K4 methylation levels on both active and repressed genes and at the telomeric regions. We found that the plant homeodomain (PHD) finger of Jhd2 is important for its chromatin association in vivo. However, this association is not dependent on H3K4 methylation and the H3 N-terminal tail, suggesting the presence of an alternative mechanism by which Jhd2 binds nucleosomes. We also provide evidence that the JmjN domain and its interaction with the JmjC catalytic domain are important for Jhd2 function and that Not4 (an E3 ligase) monitors the structural integrity of this interdomain interaction to maintain the overall protein levels of Jhd2. We show that the S451R mutation in human SMCX (a homolog of Jhd2), which has been linked to mental retardation, and the homologous T359R mutation in Jhd2 affect the protein stability of both of these proteins. Therefore, our findings provide a mechanistic explanation for the observed defects in patients harboring this SMCX mutant and suggest the presence of a conserved pathway involving Not4 that modulates the protein stability of both yeast Jhd2 and human SMCX.  相似文献   

17.
Histone H3 lysine 27 (H3K27) methylation and H2A monoubiquitination (ubH2A) are two closely related histone modifications that regulate Polycomb silencing. Previous studies reported that H3K27 trimethylation (H3K27me3) rarely coexists with H3K36 di- or tri-methylation (H3K36me2/3) on the same histone H3 tails, which is partially controlled by the direct inhibition of the enzymatic activity of H3K27-specific methyltransferase PRC2. By contrast, H3K27 methylation does not affect the catalytic activity of H3K36-specific methyltransferases, suggesting other Polycomb mechanism(s) may negatively regulate the H3K36-specific methyltransferase(s). In this study, we established a simple protocol to purify milligram quantities of ubH2A from mammalian cells, which were used to reconstitute nucleosome substrates with fully ubiquitinated H2A. A number of histone methyltransferases were then tested on these nucleosome substrates. Notably, all of the H3K36-specific methyltransferases, including ASH1L, HYPB, NSD1, and NSD2 were inhibited by ubH2A, whereas the other histone methyltransferases, including PRC2, G9a, and Pr-Set7 were not affected by ubH2A. Together with previous reports, these findings collectively explain the mutual repulsion of H3K36me2/3 and Polycomb modifications.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号