首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of insulinhypoglycemia and arginine infusion on circulating concentrations of plasma growth hormone-releasing hormone (GHRH) and growth hormone (GH) has been studied in 24 children (4.4 to 14.3 years). Plasma GH and GHRH concentrations were determined by RIA. Basal plasma GHRH levels were detectable in the plasma of all patients ranging from 6.8 to 27.1 pg/ml. Injection of 0.1 U/kg body wt. insulin i.v. resulted in an increase of plasma GHRH levels (11.1 +/- 1.4 pg/ml vs. 18.8 +/- 2.6 pg/ml; P less than 0.01) preceding that of plasma GH (1.5 +/- 0.4 ng/ml vs. 13.6 +/- 1.3 ng/ml; P less than 0.01). Infusion of 0.5 gm/kg body wt. arginine hydrochloride did increase GH concentrations (2.0 +/- 0.6 ng/ml vs. 13.9 +/- 2.3 ng/ml; P less than 0.01) but did not change circulating plasma GHRH levels. Since the source of peripheral GHRH concentrations is not known the importance of these findings remains to be determined.  相似文献   

2.
Experiments were conducted to evaluate the possible role of circulating growth hormones triiodothyronine (T3), thyroxine (T4), and insulin-like growth factor I (somatomedin-C; IGF-I) in the elevation of plasma growth hormone (GH) which occurs in protein-restricted chickens. Plasma hormone changes were determined over a 2-week period of protein depletion by feeding a 5% protein diet as well as a similar period of protein repletion with a 20% protein diet. The rise in plasma GH was observed in two separate studies. Plasma concentrations of T4, T3, and IGF-I were all depressed in protein-restricted chicks prior to or concurrent with the GH elevation. In the protein repletion time course study, T4 and T3 concentrations were normalized prior to or concurrent with plasma GH normalization. However, IGF-I concentrations in repleted chicks did not return to control levels until after normal levels of GH were observed. These data suggest that thyroid hormones may play a greater role in the regulation of GH secretion during periods of malnourishment than IGF-I; the latter being currently thought to be a peripherally circulating inhibitor of GH release in animals.  相似文献   

3.
Ghrelin is an endogenous growth hormone (GH) secretagogue recently isolated from the stomach. Although it possesses a strong GH releasing activity in vitro and in vivo, its physiological significance in endogenous GH secretion remains unclear. The aim of this study was to characterize plasma ghrelin levels in acromegaly and growth hormone deficiency (GHD). We investigated plasma total and active ghrelin in 21 patients with acromegaly, 9 patients with GHD and 24 age-, sex- and BMI-matched controls. In all subjects, we further assessed the concentrations of leptin, soluble leptin receptor, insulin, IGF-I, free IGF-I and IGFBP-1, 2, 3 and 6. Patients with acromegaly and GHD as well as control subjects showed similar levels of total ghrelin (controls 2.004+/-0.18 ng/ml, acromegalics 1.755+/-0.16 ng/ml, p=0.31, GHD patients 1.704+/-0.17 ng/ml, p=0.35) and active ghrelin (controls 0.057+/-0.01 ng/ml, acromegalics 0.047+/-0.01 ng/ml, p=0.29, GHD patients 0.062+/-0.01 ng/ml, p=0.73). In acromegalic patients plasma total ghrelin values correlated negatively with IGF-I (p<0.05), in GHD patients active ghrelin correlated with IGF-I positively (p<0.05). In the control group, total ghrelin correlated positively with IGFBP-2 (p<0.05) and negatively with active ghrelin (p=0.05), BMI (p<0.05), WHR (p<0.05), insulin (p=0.01) and IGF-I (p=0.05). Plasma active ghrelin correlated positively with IGFBP-3 (p=0.005) but negatively with total ghrelin and free IGF-I (p=0.01). In conclusion, all groups of the tested subjects showed similar plasma levels of total and active ghrelin. In acromegaly and growth hormone deficiency plasma ghrelin does not seem to be significantly affected by changes in GH secretion.  相似文献   

4.
BACKGROUND: Insulin resistance is an important determinant of circulating leptin concentrations in humans, but its independent contribution on plasma leptin levels are controversial. In the present study, we characterized plasma leptin levels and their regulation in women with 2 different insulin resistance states: type 2 diabetes and myotonic dystrophy disease, and in controls. MATERIAL AND METHODS: We studied 3 groups of women: 21 type 2 diabetic patients, 20 myotonic dystrophic patients and a control group of 20 normoglycemic subjects, matched in age and body mass index. Body composition, fasting glucose and insulin, IGF-I, IGF-binding protein-3 and leptin were studied. Body composition was measured using a bioelectrical impedance analyser. Insulin sensitivity (in percentage) was modeled according to a computer-based homeostasis model assessment model. Data are expressed in mean +/- SEM. RESULTS: In both groups of patients, glucose concentrations were higher in type 2 diabetic patients than in myotonic dystrophic patients, and insulin concentrations and insulin sensitivity were similar in the 2 groups of patients (82.4 +/- 18.6% in type 2 diabetic patients vs. 69.7 +/- 9.7% in myotonic dystrophic patients, p = 0.2) and lower than in controls. Serum leptin and leptin/fat mass ratio were higher in myotonic dystrophic patients than in type 2 diabetic patients (30 +/- 4.9 ng/ml vs. 17.7 +/- 2.6 ng/ml, p = 0.03 and 2.32 +/- 0.69 ng/ml/kg vs. 1.07 +/- 0.2 ng/ml/kg, p = 0.02, respectively) or those found in controls. In type 2 diabetic patients, leptin concentrations were correlated with body mass index and body fat, and in myotonic dystrophic patients leptin concentrations were correlated with age, body mass index, fasting insulin and lower insulin sensitivity, whereas leptin concentrations were not correlated with body fat. CONCLUSIONS: These findings suggest that leptin concentrations and regulation in myotonic dystrophic patients are different from type 2 diabetes.  相似文献   

5.
Four streptozotocin-diabetic gilts (maintained on exogenous insulin for 3 months) and 4 normoglycaemic gilts were treated with 600 i.u. PMSG. Diabetic gilts had insulin therapy removed at the time of PMSG administration. Plasma glucose averaged 463 +/- 5 mg/100 ml for diabetic gilts and 82 +/- 4 mg/100 ml for control gilts over the 72-h sampling period. Serum insulin was lower in diabetic than in normoglycaemic gilts (glycaemic state by time interaction; P less than 0.0001). At ovary removal 75 h after PMSG, numbers and percentages of large (greater than or equal to 7 mm) and medium (3-6 mm) non-atretic follicles were similar for diabetic and control gilts (31 vs 68%; s.e.m. = 7; P less than 0.05). Diabetic gilts had a greater percentage of atretic follicles over all size classes (50 vs 21%; s.e.m. = 7; P less than 0.03). After PMSG, LH was suppressed within 12 h in control gilts and remained similar to values in diabetic gilts until 72 h, when LH was elevated in 2 diabetic gilts (glycaemic state by time interaction; P less than 0.001). Pulsatile LH patterns during 52-55 h after PMSG were not affected by glycaemic state. Serum concentrations of IGF-I tended (P less than 0.1) to be lower in diabetic gilts. Concentrations of oestradiol and FSH in serum were similar in diabetic and control gilts. Follicular fluid concentrations of oestradiol in follicles greater than or equal to 7 mm were lower in diabetic than normoglycaemic gilts (341 vs 873 ng/ml; s.e.m. = 86; P less than 0.05). Testosterone was higher in follicles 3-6 mm in diameter in diabetic than in normoglycaemic gilts (142 vs 80 ng/ml; s.e.m. = 26; P less than 0.05). Progesterone concentrations in follicular fluid were not affected by glycaemic state. Concentrations of IGF-I in follicles greater than or equal to 7 mm were lower in diabetic than control gilts (150 vs 200 ng/ml; s.e.m. = 13; P less than 0.05). We conclude that follicles of diabetic gilts respond to external gonadotrophic stimulation with decreased hormone production and increased ovarian follicular atresia, despite an absence of effects on circulating gonadotrophin and oestradiol concentrations.  相似文献   

6.
This study examined the effects of p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), fasting and flight on thyroid hormones and corticosterone in Gambel's White-crowned Sparrows (Zonotrichia leucophrys gambelli). Female sparrows were dosed daily with either 5 mg p,p'-DDT per kg body mass or corn oil vehicle over 3 days. On the fifth day the sparrows were divided into 3 groups: (1) unstressed - non-stressed control sparrows; (2) fasted - sparrows fasted for intervals ranging from 20 min to 9 h; or (3) flown - sparrows flown in a wind tunnel for intervals between 20 min and 2.5 h while fasting. Half the sparrows from each group received DDT (DDT-dosed sparrows) and the other half corn oil vehicle only (vehicle sparrows). Trunk blood plasma was analyzed for thyroxine, triiodothyronine and corticosterone using radioimmunoassay. In the flown group, corticosterone was elevated (DDT-dosed 35.52 ng/ml, P < or = 0.05), and thyroxine was depressed (DDT-dosed 4.09 ng/ml, P < or = 0.05; vehicle 4.33 ng/ml, P < or = 0.05). Elevated corticosterone likely decreased thyroid hormone production through a negative feedback mechanism originating at the hypothalamus. Mean triiodothyronine concentrations did not differ among any of the test groups. Relative to time fasted and flown, thyroxine decreased in flown birds dosed with DDT (P < 0.001) and triiodothyronine decreased in fasted birds dosed with DDT (P = 0.004). The increased rate of hormone diminution may be a result of the ability of DDT to induce microsomal enzyme production.  相似文献   

7.
The effects of growth hormone-releasing factor (GHRF) on growth hormone (GH) secretion were studied in beef calves after hypophysial stalk transection (HST). Peripheral GH concentration during surgery was elevated for 60 min after the initiation of anesthesia to 15 ng/ml, which was greater than plasma levels after HST and during the recovery period (0-30 hr mean, 3 ng/ml; P less than 0.05). Episodic GH secretion normally seen in sham-operated controls (SOC) was abolished after HST. Before HST, calves responded to 80% of the GHRF challenges, whereas after HST calves responded to every challenge of GHRF with an increase in plasma GH. A dose of 0.067 microgram human pancreatic (hp) hpGHRF(1-40)OH/kg body wt 3 days after HST increased plasma GH to 55 ng/ml from a control period mean of 5 ng/ml (P less than 0.04). On Day 8, HST calves received two injections of 0.067 microgram hpGHRF/kg body wt at 3-hr intervals, with feeding 70 min after the first injection. During two preinjection control periods, basal GH averaged less than 4 ng/ml and increased to 17 (P less than 0.02) and 9 (P less than 0.04) ng/ml immediately after the first and second injection of hpGHRF, but the response declined over the 8-day period after surgery. On Days 19 and 20, the HST calves were infused iv with 0.033 and 0.067 microgram somatostatin(SS)-14 (SRIH)/kg body wt, during which a pulse injection of 0.067 microgram hpGHRF/kg body wt was administered. GH increased to 9 and 5 ng/ml during the 0.033- and 0.067-microgram SRIH infusions after GHRF; no somatotropic rebound was observed after the SRIH was discontinued as was seen in the animals while the hypothalamic-hypophysial connections were intact. Five and six months after HST the responses to two analogs of rat hypothalamic GHRF were similar to those in SOC calves. These results indicate that HST calves responded to exogenous GHRF with an abrupt increase in plasma GH, but GH response to GHRF during SRIH infusion was greatly inhibited.  相似文献   

8.
Okere C  Hacker RR  Werchola G 《Theriogenology》1997,47(7):1403-1412
This study was designed to evaluate the effects of exogenous treatment with pST, insulin and their combination on periparturient serum IGF-I levels, prenatal piglet development and viability. Pregnant Yorkshire gilts were injected daily with either 5 ml of saline (C), n = 23; 5 mg pST (P), n = 23; 0.50 IU/kg of insulin (I), n = 23; or pST plus insulin at the above dosage, according to 2 x 2 factorial design from Day 30 to 70 of gestation. All gilts were sacrificed on Day 113 of gestation. Peripartum IGF-I serum levels were determined by RIA following a 36 h incubation in 0.2 M gly-gly HCL. Recovery of human rIGF-I standard was > 95%, while the intra-assay CV was 5.74%. Measures of piglet viability were compared using Randall's adaptation of Apgar score for human neonates. Piglet weight and crown-to-rump length were determined prior to dissection. Treatments (P, I and P + I) elicited highly significant increases in maternal serum IGF-I concentrations (321.9, 337.0, 375.0 vs 247.6 ng/ml; P = 0.0001) on Day 113 of gestation. Nonsignificant differences were detected in piglet serum IGF-I (94.8, 102.6, 110.2 vs 92.2 ng/ml; P = 0.06). These results revealed no relationship between piglet weight and maternal (r = 0.03) or piglet serum IGF-I levels (r = 0.08). Only a weak association between gilt and piglet serum IGF-I concentrations (r = 0.26) was detected. Injections with pST and or insulin did not influence piglet viability scores (P = 0.74). Viability scores were highly correlated with piglet weight (r = 0.66), crown -rump length (r = 0.70), but not with IGF-I concentrations in gilt (r = 0.09) and piglet serum (r = 0.16). Body weights, crown -rump length and visceral organ weights of piglets did not differ between control and hormone -treated gilts (P >/= 0.05). These results indicate 1) that there was no direct treatment effects on in utero piglet development or neonatal viability; 2) that IGF-I production in gilt and piglet compartment is independent, suggesting fetal endocrine autonomy regarding IGF-I production; and 3) that the usual low IGF-I concentrations in mid-late gestation in swine could be replenished by maternal pST and or insulin therapy.  相似文献   

9.
A highly sensitive and specific RIA for IGF-I has been developed using recombinant DNA-derived IGF-I of very high purity and specific antiserum to it. This assay system could detect IGF-I at as low concentrations as 20-30 ng/ml. The intra-assay and interassay coefficients of variation at various concentrations of IGF-I were 4.9 to 6.5% and 5.4 to 8.0%, respectively. The recovery rate of pure IGF-I added to plasma was 77.0 +/- 3.7%. The antiserum did not cross-react with porcine insulin, biosynthetic human insulin, hGH, hEGF, the synthetic C-domain of IGF-I or that of IGF-II, but reacted equally with an analog, Thr59-IGF-I. Plasma IGF-I was extracted by the acid-ethanol method before assay to separate IGF-I from its binding protein. When plasma IGF-I was assayed without extraction, the inhibition curves of serial dilution of plasma samples from several individuals were not parallel to the standard curve of IGF-I. The plasma concentration of IGF-I was 147 +/- 49 ng/ml (mean +/- SD) in 156 normal adults aged from 20-59 years. As reported by others, the IGF-I levels were low in cord plasma (41.8 +/- 23.5 ng/ml) and plasma of patients with GH deficiency (64.6 +/- 42.0 ng/ml), while its levels were high in normal children of pubertal ages (12-13 yr, 365 +/- 126 ng/ml) and in patients with active acromegaly (562 +/- 115 ng/ml). This RIA system is a simple and useful method for determining plasma IGF-I in normal and diseased states.  相似文献   

10.
1. Chick liver cells were incubated in unsupplemented medium (control), or medium supplanted with either 1 microgram/ml pituitary derived chicken growth hormone (GH), 50 ng/ml recombinant human insulin like growth factor-I (IGF-I), or 1 microgram growth hormone/ml and 50 ng insulin like growth factor-I/ml (GH + IGF-I). 2. GH supplementation stimulated acetate incorporation into liver cell lipid. Low density lipoprotein (LDL) lipid secretion was increased quantitatively by GH. 3. Cells incubated with IGF-I incorporated more acetate into lipid and secreted more lipid as VLDL and HDL than controls. 4. A metabolic antagonism between GH and IGF-I was evident with respect to lipogenesis. 5. Neither GH nor IGF-I altered, quantitatively, cell protein synthesis or apoprotein secretion.  相似文献   

11.
A 36-yr-old man with multiple endocrine neoplasia (MEN) type I had an ectopic growth hormone-releasing hormone (GHRH) syndrome due to a GHRH-secreting pancreatic tumor. The immunoreactive (IR)-GHRH concentration in his plasma ranged from 161 to 400 pg/ml (299 +/- 61 pg/ml, mean +/- SD; normal, 10.4 +/- 4.1 pg/ml), and a significant correlation was found between his plasma IR-GHRH and GH (r = 0.622, p less than 0.02). After removal of the pancreatic tumor, the high plasma GH concentration returned to nearly the normal range (42.2 +/- 31.3 to 9.6 +/- 3.8 ng/ml). These changes paralleled the normalization of his plasma IR-GHRH (16.1 +/- 3.8 pg/ml) and some of his symptoms related to acromegaly improved. However, plasma GH (7.7 +/- 1.3 ng/ml) and IGF-I (591 +/- 22 ng/ml) concentrations were high at 12 months after surgery, suggesting adenomatous changes in the pituitary somatotrophs. Before surgery, exogenous GHRH induced a marked increase in plasma GH, and somatostatin and its agonist (SMS201-995) completely suppressed GH secretion, but not IR-GHRH release. No pulsatile secretion of either IR-GHRH or GH was observed during sleep. An apparent increase in the plasma GH concentration was observed in response to administration of TRH, glucose, arginine or insulin, while plasma IR-GHRH did not show any fluctuation. However, these responses of plasma GH were reduced or no longer observed one month and one year after surgery. These results indicate that 1) a moderate increase in circulating GHRH due to ectopic secretion from a pancreatic tumor stimulated GH secretion resulting in acromegaly, and evoked GH responses to various provocative tests indistinguishable from those in patients with classical acromegaly, and 2) the ectopic secretion of GHRH may play an etiological role in the pituitary lesion of this patient with MEN type I.  相似文献   

12.
Diabetes mellitus was induced using streptozotocin in five gilts between 8 and 12 weeks of age. Gilts were maintained with exogenous insulin (INS) except during experimental periods. Four litter-mate gilts served as controls. At 9 months of age, all gilts were ovariectomized, and 30 days after ovariectomy, Experiment (Exp) 1 was conducted. Jugular vein catheters were inserted and blood samples were collected every 10 min for 8 hr. Experiment 2 was conducted when gilts were 11 months of age. Venous blood and cerebrospinal fluid (CSF) samples were collected in the absence (Phase I) or presence (Phase II) of INS therapy. In Experiment 1, plasma glucose concentrations were greater (P < 0.05) in diabetic (465 +/- 17 mg/100 ml) than in control (82 mg +/- 17 mg/100 ml) gilts, whereas serum INS was lower (P < 0.0001) in diabetic gilts (0.3 +/- 0.02 vs 0.9 +/- 0.05 ng/ml) and insulin-like growth factor-I was similar in diabetic and control gilts (32 +/- 3 vs 43 +/- 4 ng/ml, respectively). Mean serum GH concentration was 2-fold greater (P < 0.02) in diabetics (2.8 +/- 0.4 ng/ml) than in control gilts (1.2 +/- 0.2 ng/ml). Diabetic gilts exhibited a greater (P < 0.05) number of GH pulses than control gilts (3.2 +/- 0.4 vs 1.5 +/- 0.3/8 hr, respectively). In addition, GH pulse magnitude was markedly elevated (P < 0.02) in diabetic (5.8 +/- 0.4 ng/ml) compared with control gilts (3.3 +/- 0.6 ng/ml). Mean basal serum GH concentrations were greater (P < 0.07) in diabetic (2.2 +/- 0.5 ng/ml) compared with control gilts (1.0 +/- .1 ng/ml). In Experiment 2, CSF concentrations of insulin-like growth factor-I, INS, GH, and protein were similar for diabetic and control gilts in both phases. Serum GH levels were similar for diabetics and controls in Phase I, but were greater (P < 0.05) in diabetics than in controls in Phase II. CSF glucose levels were greater in diabetic than in control gilts in both the presence (P < 0.003) and absence (P < 0.0002) of INS therapy, whereas plasma glucose was greater (P < 0.003) in diabetic than in control gilts in the absence of INS, but returned to control concentrations in the presence of INS. However, serum GH levels were unchanged after INS therapy in the diabetic gilts. In conclusion, altered GH secretion in the diabetic gilt may, in part, be due to elevated CSF glucose concentrations, which may alter GH-releasing hormone and/or somatostatin secretion from the hypothalamus.  相似文献   

13.
The capacity of heifer calves of a late sexually maturing Zebu (Bos indicus) genotype to respond to superstimulation with FSH at a young age and in vitro oocyte development were examined. Some calves were treated with a GnRH agonist (deslorelin) or antagonist (cetrorelix) to determine whether altering plasma concentrations of LH would influence follicular responses to FSH and oocyte developmental competency. Brahman calves (3-mo-old; 140 +/- 3 kg) were randomly assigned to 3 groups: control (n = 10); deslorelin treatment from Day -8 to 3 (n = 10); and cetrorelix treatment from Day -3 to 2 (n = 10). All calves were stimulated with FSH from Day 0 to 2, and were ovariectomized on Day 3 to determine follicular responses to FSH and to recover oocytes for in vitro procedures. Before treatment with FSH, heifers receiving deslorelin had greater (P < 0.001) plasma LH (0.30 +/- 0.01 ng/ml) than control heifers (0.17 +/- 0.02 ng/ml), while plasma LH was reduced (P < 0.05) in heifers treated with cetrorelix (0.13 +/- 0.01 ng/ml). Control heifers had a surge release of LH during treatment with FSH, but this did not occur in heifers treated with deslorelin or cetrorelix. All heifers had large numbers of follicles > or = 2 mm (approximately 60 follicles) after superstimulation with FSH, and there were no differences (P > 0.10) between groups. Total numbers of oocytes recovered and cultured also did not differ (P > 0.05) for control heifers and heifers treated with deslorelin or cetrorelix. Fertilization and cleavage rates were similar for the 3 groups, and developmental rates to blastocysts were also similar. Zebu heifers respond well to superstimulation with FSH at a young age, and their oocytes are developmentally competent.  相似文献   

14.
Growth hormone response of bull calves to growth hormone-releasing factor   总被引:2,自引:0,他引:2  
Three experiments were conducted to determine serum growth hormone (GH) response of bull calves (N = 4; 83 kg body wt) to iv injections and infusions of human pancreatic GH-releasing factor 1-40-OH (hpGRF). Peak GH responses to 0, 2.5, 10, and 40 micrograms hpGRF/100 kg body wt were 7 +/- 3, 8 +/- 3, 18 +/- 7, and 107 +/- 55 (mean peak height +/- SEM) ng/ml serum, respectively. Only the response to the 40-microgram dose was greater (P less than 0.05) than the 0-microgram dose. Concentrations of prolactin in serum were not affected by hpGRF treatment. In calves injected with hpGRF (20 micrograms/100 kg body wt) at 6-hr intervals for 48 hr, GH increased from a mean preinjection value of 3.1 ng/ml serum to a mean peak response value of 70 ng/ml serum. Differences in peak GH response between times of injection existed within individual calves (e.g., 10.5 ng/ml vs 184.5 ng/ml serum). Concentrations of GH in calves infused continuously with either 0 or 200 micrograms hpGRF/hr for 6 hr averaged 7.4 +/- 3 and 36.5 +/- 11 ng/ml serum, respectively (P less than 0.05). Concentrations of GH oscillated markedly in hpGRF-infused calves, but oscillations were asynchronous among calves. We conclude that GH response of bull calves to hpGRF is dose dependent and that repeated injections or continuous infusions of hpGRF elicit GH release, although magnitude of response varies considerably. We hypothesize that differences in GH response to hpGRF within and among calves, and pulsatile secretion in the face of hpGRF infusion may be related to the degree of synchrony among exogenous hpGRF and endogenous GRF and somatostatin.  相似文献   

15.
Ghrelin stimulates growth hormone (GH) secretion, but it is unknown whether there is a feedback of GH on ghrelin secretion. In this study, we characterized the relatedness of GH and ghrelin in a model of acute caloric deprivation in 10 healthy women (age 26.7 +/- 1.6 yr) during a 4-day fast in the early follicular phase. GH, ghrelin, and cortisol were assessed every hour over 24 h during an isocaloric diet and after a 4-day complete fast. Sampling during a normal diet at baseline demonstrated that ghrelin decreased 17.9% within 1 h after meals (P < 0.0001), but there was no meal effect on GH. BMI (22.3 +/- 0.4 vs. 21.5 +/- 0.4 kg/m2, P < 0.0001) and IGF-I (312 +/- 28 vs.124 +/- 22 ng/ml, P < 0.0001) decreased during fasting. Mean 24-h GH increased (2.6 +/- 0.5 vs. 5.6 +/- 0.5 ng/ml, P < 0.001), but ghrelin decreased (441.3 +/- 59.7 vs. 359.8 +/- 54.2 pg/ml, P = 0.012). The peak ghrelin level decreased from 483.5 to 375.6 pg/ml (P < 0.0001), and the time of the peak ghrelin changed from 0415 to 1715. In contrast, the diurnal pattern of GH was maintained, with increases in the nadir (1.1 to 3.4 ng/ml) and peak GH concentrations (4.1 to 7.9 ng/ml) from the fed to fasted state (P < 0.0001). The change in morning GH concentrations was inversely related to the change in ghrelin (r = -0.79, P = 0.012). During complete short-term caloric deprivation in healthy women, ghrelin decreases, even as GH rises, and these processes appear to be reciprocal, suggesting that GH exhibits feedback inhibition on ghrelin. Our data provide new evidence of the physiological relationship of GH and ghrelin in response to changes in protein-energy metabolism.  相似文献   

16.
Anabolic effects of exercise are mediated, in part, by fibroblast growth factor-2 (FGF-2), insulin-like growth factor-I (IGF-I), and growth hormone (GH). To identify local vs. systemic modification of these mediators, 10 male subjects performed 10 min of unilateral wrist-flexion exercise. Blood was sampled from catheters placed in basilic veins of both arms. Lactate was significantly increased only in the exercising arm. FGF-2 decreased dramatically (P < 0.01) in both the resting (from 1.49 +/- 0.32 to nadir at 0.11 +/- 0.11 pg/ml) and exercising arm (1.80 +/- 0.60 to 0.29 +/- 0.14 pg/ml). Small but significant increases were found in both the resting and exercising arm for IGF-I and IGF binding protein-3 (IGFBP-3). GH was elevated in blood sampled from both the resting (from 1.04 +/- 0.68 to a peak of 2.57 +/- 0.53 ng/ml) and exercising arm (1.04 +/- 0.66 to 2.43 +/- 0.42 ng/ml, P < 0.05). Unilateral wrist exercise was not sufficiently intense to increase circulating lactate or heart rate, but it led to systemic changes in GH, IGF-I, IGFBP-3, and FGF-2. Low-intensity exercise involving small muscle groups can influence the circulating levels of growth factors.  相似文献   

17.
In the present study, we tested the hypothesis that short-term fasting would reduce leptin gene expression, circulating leptin, and LH pulsatility in prepubertal heifers in association with a decrease in circulating concentrations of insulin and insulin-like growth factor I (IGF-I). Twelve prepubertal crossbred heifers (mean +/- SD = 315 +/- 5 kg body weight) were assigned randomly to one of two treatments in two replicates: 1) control; normal feed consumption (n = 6) and 2) fasted; 48 h of total feed restriction (n = 6). Blood samples were collected at 15-min intervals for 8 h on Days 0 and 2 of the experiment and twice on Day 1. Subcutaneous fat samples were collected before treatment onset (Day -1) and at the end of the intensive blood sampling on Day 2. Acute feed restriction markedly reduced leptin mRNA in adipose tissue (P < 0.01) and circulating concentrations of leptin (P < 0.05), IGF-I (P < 0.01), and insulin (P = 0.05) as compared with controls on Day 2. Moreover, the treatment x day interaction (P < 0.076) and within-day contrasts (expressed as a percentage of Day 0 values) revealed that the mean frequency of LH pulses in the fasted group was lower (P < 0.06) than in controls on Day 2. Neither mean concentrations of growth hormone (GH) nor GH secretory dynamics were affected by acute feed restriction. Fasting-mediated decreases in leptin gene expression and circulating leptin, in association with reductions in secretion of IGF-I, insulin, and LH, provide a basis for investigating leptin as a hormone signaling energy status to the central reproductive axis in cattle.  相似文献   

18.
The effects of a growth hormone releasing factor, human pancreatic growth hormone releasing factor-44 (hpGRF-44), on growth hormone (GH) secretion in calves, heifers and cows were studied. A single intravenous (iv) injection of 0.1, 0.25, 0.5 or 1.0 microgram of synthetic hpGRF-44 per kg of body weight (bw) in calves significantly elevated the circulating GH level within 2-5 min, while no increase in plasma GH was observed in saline injected control calves. The plasma GH level increased proportionally to the log dose of hpGRF-44, and reached a peak at 5-10 min (p less than 0.01). Subcutaneous injection of hpGRF-44 also elevated the plasma GH level, but the peak value at 15 min was 37% of that of iv injection (p less than 0.05). Intravenous injection of 0.25 microgram of hpGRF-44 per kg of bw to female calves, heifers, and cows significantly elevated mean the GH levels from 8.5, 2.3, and 1.6 ng/ml at 0 time to peak values of 97, 26, and 11.6 ng/ml, respectively (p less than 0.01). The plasma GH response and basal level in calves were significantly higher than those of heifers or cows (p less than 0.025). The plasma GH response to hpGRF-44 as well as the basal level decreased with advancing age. The plasma GH response to hpGRF-44 and basal GH in male calves were significantly greater than those in female calves (p less than 0.001). These results indicate that synthetic hpGRF-44 is a potent secretogogue for bovine GH, and suggest its usefulness in the assessment of GH secretion and reserve in cattle.  相似文献   

19.
Responses of plasma growth hormone (GH) and insulin-like growth factor-I (IGF-I), and milk production to subcutaneous (sc) injection(s) of two synthetic human growth hormone-releasing factor (hGRF) analogs were studied in dairy cows. Two mg of each hGRF analog dissolved in 5 ml saline per cow were injected into the shoulder area of each experimental animal, and jugular venous blood samples were collected via an indwelling catheter or by venipuncture. Plasma GH and IGF-I concentrations were measured by radioimmunoassay methods. In dry cows, the mean concentration of plasma GH after a single sc injection of hGRF analogs rose to 22.0-28.3 ng/ml at about 5 h from 1.4-1.7 ng/ml at 0 h (just before injection), and returned to the level before injection after 10-12 h. On the other hand, the plasma IGF-I began to increase after a lag of 4-6 h following a single injection of hGRF analogs, and reached maximum values of 71.1-89.4 ng/ml at 20 h from 43.7-46.4 ng/ml at 0 h. The IGF-I concentration at 24 h after a single injection of hGRF analogs was still higher than the value for the dry cows given saline. In lactating cows, the plasma concentration of GH at 2 h after daily sc injections of hGRF analogs during 14 consecutive days (an injection period) was higher than those for the lactating cows which received saline. Also, during the injection period, the concentration of IGF-I was higher in the lactating cows which received hGRF analog injections than in the cows which received saline injections. During the last 7 days of the injection period, the administration of hGRF analogs increased the mean milk yield by 11-19% in comparison with those for the saline injected cows. A positive correlation was observed between the mean plasma IGF-I concentration and the mean milk yield in the lactating cows treated with hGRF analogs throughout the injection and a postinjection (11 consecutive days after cessation of hGRF analog injection) periods. The results demonstrate that a single sc injection of hGRF analogs stimulates both GH release and the circulating level of IGF-I in dry cows, and that daily sc injections of hGRF analogs over 14 days enhance milk production, and plasma GH and IGF-I levels in lactating cows.  相似文献   

20.
The present study aims to investigate potential regulatory effect of different growth-related hormones including growth hormone (GH), human insulin-like growth factor-I (hIGF-I), thyroxine (T4), triiodothyronine (T3) and cortisol, on insulin-like growth factor-I (IGF-I) mRNA expression of hepatocytes isolated from silver sea bream. By using real-time PCR, IGF-I mRNA expression profiles of hepatocytes in response to individual hormones were determined in vitro. Hepatocytes incubated with GH at concentrations of 10–1000 ng/mL showed significantly higher IGF-I expression, but the elevation was attenuated at high concentration of GH (1000 ng/mL). IGF-I expression remained unchanged in hepatocytes after incubation with hIGF-I. Hepatocytes incubated with T4 at concentration of 1000 ng/mL exhibited a significant elevation in IGF-I expression, whereas no difference in IGF-I expression was demonstrated in hepatocytes after incubation with T3. Upon incubation with cortisol (1–1000 ng/mL), IGF-I expression was significantly decreased in hepatocytes in a dose-dependent manner. Our study demonstrated that GH, T4, and cortisol had direct modulatory effects on IGF-I expression in fish hepatocytes in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号