首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calreticulin (CRT) is a multifunctional Ca(2+)-binding protein that mainly functions in the endoplasmic reticulum as a molecular chaperone for newly synthesized proteins. Recently we reported the protein composition of human metaphase chromosomes (Uchiyama et al., 2004), which included CRT. Here we describe new characteristics of CRT in vitro as well as its localization on the surface of metaphase chromosomes in vivo. CRT was detected in the chromosomal fraction by Western blotting and its binding partners were identified as core and linker histones by ligand overlay assay. Surface plasmon resonance sensor analyses revealed that CRT is bound to chromatin fibers. Moreover, we found that CRT has both supercoiling activity, which assists core histone assembly into chromatin fibers, and binding ability to histone H2A/H2B dimers and histone H3/H4 tetramers. Unlike the chromosome scaffold proteins, indirect immunofluorescent staining revealed that CRT is located on the surface of metaphase chromosomes. These results suggest that CRT plays a role which involves chromatin dynamics on the surface of mitotic chromosomes.  相似文献   

2.
3.
Proteome analysis of human metaphase chromosomes   总被引:7,自引:0,他引:7  
DNA is packaged as chromatin in the interphase nucleus. During mitosis, chromatin fibers are highly condensed to form metaphase chromosomes, which ensure equal segregation of replicated chromosomal DNA into the daughter cells. Despite >1 century of research on metaphase chromosomes, information regarding the higher order structure of metaphase chromosomes is limited, and it is still not clear which proteins are involved in further folding of the chromatin fiber into metaphase chromosomes. To obtain a global view of the chromosomal proteins, we performed proteome analyses on three types of isolated human metaphase chromosomes. We first show the results from comparative proteome analyses of two types of isolated human metaphase chromosomes that have been frequently used in biochemical and morphological analyses. 209 proteins were quantitatively identified and classified into six groups on the basis of their known interphase localization. Furthermore, a list of 107 proteins was obtained from the proteome analyses of highly purified metaphase chromosomes, the majority of which are essential for chromosome structure and function. Based on the information obtained on these proteins and on their localizations during mitosis as assessed by immunostaining, we present a four-layer model of metaphase chromosomes. According to this model, the chromosomal proteins have been newly classified into each of four groups: chromosome coating proteins, chromosome peripheral proteins, chromosome structural proteins, and chromosome fibrous proteins. This analysis represents the first compositional view of human metaphase chromosomes and provides a protein framework for future research on this topic.  相似文献   

4.
Isolated human metaphase chromosomes were treated with formamide at different (0-70%) concentrations and examined electronmicroscopically by protein monolayer technique. At increasing formamide concentration chromosomes gradually decondense, the scaffold becomes more clearly visible, the loops of chromatin fibres coming off the central part of chromosomes lose their nucleosomal appearance. Electrophoretic analysis of chromosomal proteins data show that formamide-treated chromosomes have approximately the same histone content as those before treatment, although chromosomes treated with 70% formamide look very similar to histone-depleted ones described elsewhere.  相似文献   

5.
The structure of histone-depleted metaphase chromosomes   总被引:1,自引:0,他引:1  
We have previously shown that histone-depleted metaphase chromosomes can be isolated by treating purified HeLa chromosomes with dextran sulfate and heparin (Adolph, Cheng and Laemmli, 1977a). The chromosomes form fast-sedimenting complexes which are held together by a few nonhistone proteins.In this paper, we have studied the histone-depleted chromosomes in the electron microscope. Our results show that: the histone-depleted chromosomes consist of a scaffold or core, which has the shape characteristic of a metaphase chromosome, surrounded by a halo of DNA; the halo consists of many loops of DNA, each anchored in the scaffold at its base; most of the DNA exists in loops at least 10–30 μm long (30–90 kilobases).We also show that the same results can be obtained when the histones are removed from the chromosomes with 2 M NaCl instead of dextran sulfate. Moreover, the histone-depleted chromosomes are extraordinarily stable in 2 M NaCI, providing further evidence that they are held together by nonhistone proteins.These results suggest a scaffolding model for metaphase chromosome structure in which a backbone of nonhistone proteins is responsible for the basic shape of metaphase chromosomes, and the scaffold organizes the DNA into loops along its length.  相似文献   

6.
Metaphase chromosome structure. Involvement of topoisomerase II   总被引:82,自引:0,他引:82  
SCI is a prominent, 170,000 Mr, non-histone protein of HeLa metaphase chromosomes. This protein binds DNA and was previously identified as one of the major structural components of the residual scaffold structure obtained by differential protein extraction from isolated chromosomes. The metaphase scaffold maintains chromosomal DNA in an organized, looped conformation. We have prepared a polyclonal antibody against the SC1 protein. Immunolocalization studies by both fluorescence and electron microscopy allowed identification of the scaffold structure in gently expanded chromosomes. The micrographs show an immunopositive reaction going through the kinetochore along a central, axial region that extends the length of each chromatid. Some micrographs of histone-depleted chromosomes provide evidence of the substructural organization of the scaffold; the scaffold appears to consist of an assembly of foci, which in places form a zig-zag or coiled arrangement. We present several lines of evidence that establish the identity of SC1 as topoisomerase II. Considering the enzymic nature of this protein, it is remarkable that it represents 1% to 2% of the total mitotic chromosomal protein. About 60% to 80% of topoisomerase II partitions into the scaffold structure as prepared from isolated chromosomes, and we find approximately three copies per average 70,000-base loop. This supports the proposed structural role of the scaffold in the organization of the mitotic chromosome. The dual enzymic and apparent structural function of topoisomerase II (SC1) and its location at or near the base of chromatin loops allows speculation as to its involvement in the long-range control of chromatin structure.  相似文献   

7.
V P Wray  S C Elgin    W Wray 《Nucleic acids research》1980,8(18):4155-4163
Metaphase chromosomal and interphase chromatin proteins from cells of two species have been compared by polyacrylamide gel electrophoresis. Consistent, common changes in the quantitative distribution of the nonhistone chromosomal proteins are observed in both species. Proteins of ca. 65,000 and 68,000 MW are enriched in interphase chromatin while proteins of ca. 50,000 and 200,000 are more prominent components of metaphase chromosomes. A group of proteins of 90,000-100,000 are also increased in metaphase chromosomes compared to interphase chromatin. By two dimensional gel analysis, the most abundant proteins from chromosomes of both cell types are similar, suggesting a structural role for these nonhistone proteins (1).  相似文献   

8.
A protein chromosome scaffold structure has been proposed that acts as a structural framework for attachment of chromosomal DNA. There are several troubling aspects of this concept: (1) such structures have not been seen in many previous thin-section and whole-mount electron microscopy studies of metaphase chromosomes, while they are readily seen in leptotene and zygotene chromosomes; (2) such a structure poses problems for sister chromatid exchanges; and (3) the published photographs show a marked variation in the amount of scaffold in different whole-mount preparations. An alternative explanation is that the scaffold in whole-mount preparations represents incomplete dispersion of the high concentration of chromatin in the center of chromosomes, and when the histones are removed and the DNA dispersed, the remaining nonhistone proteins (NHPs) aggregate to form a chromosome-shaped structure. Two studies were done to determine if the scaffold is real or an artifact: (1) Chinese hamster mitotic cells and isolated chromosomes were examined using two protein stains -EDTA-regressive staining and phosphotungstic acid (PTA) stain. The EDTA-regressive stain showed ribonucleoprotein particles at the periphery of the chromosomes but nothing at the center of the chromosomes. The PTA stain showed the kinetochore plates but no central structures; and (2) isolated chromosomes were partially dispersed to decrease the high concentration of chromatin in the center of the chromosome, then treated with 4 M ammonium acetate or 2 M NaCl to dehistonize them and disperse the DNA. Under these circumstances, no chromosome scaffold was seen. We conclude that the scaffold structure is an artifact resulting from incomplete dispersion of central chromatin and aggregation of NHPs in dehistonized chromosomes.  相似文献   

9.
ZHAOJIAN  SHAOBOJIN 《Cell research》1995,5(2):155-164
An argentophilic structure is present in the metaphase chromosomes of garlic(Allium sativum),Cytochemical studies indicate that the main component of the structure is non-histone proteins(NHPs).The results of light and electron microscopic observations reveal that the chromosme NHP scaffold is a network which is composed of fibres and granules and distributed throughout the chromosomes.In the NHP network,there are many condensed regions that are connected by redlatively looser regions.The distribution of the condensed regions varies in individual chromosomes.In some of the chromosomes the condensed regions are lognitudinally situsted in the central part of a chromatid while in others these regions appear as coillike transverse bands.At early metaphase.scaffolds of the sister chromatids of a chromosome are linked to each other in the centromeric region,meanwhile,they are connected by scafold materials along the whole length of the chromosome.At late metaphase,however,the connective scaffold materials between the two sister chromatids disappear gradually and the chromatids begin to separate from one another at their ends.but the chromatids are linked together in the centromeric region until anaphase.This connection seems to be related to the special structure of the NHP scaffold formed in the centromeric region.The morphological features and dynamic changes of the chromosome scaffold are discussed.  相似文献   

10.
Sheval' EV  Poliakov VIu 《Ontogenez》2006,37(6):405-418
Chromosome scaffold represents a continuous protein substructure revealed in isolated metaphase chromosomes after harsh extraction. According to postulates of the widespread radial loop model the scaffold plays an important role in the formation and maintenance of structural integrity of the mitotic chromosomes. Here, the data concerning the structure and major components of the chromosome scaffold are presented. The experiments suggesting that the scaffold represents a system of discrete linker proteins and the data about high mobility of scaffolding proteins are discussed. Furthermore, the data about higher-level chromatin structures (elementary chromonema and 200-250 nm fibers) and behavior of scaffolding proteins are compared. The results presented agree with the idea that at the present stage it is possible to discriminate chromatin complexes, whose structural integrity is not maintained by the chromosome scaffold.  相似文献   

11.
Chromosome scaffold represents a continuous protein substructure revealed in isolated metaphase chromosomes after harsh extraction. According to postulates of the widespread radial loop model the scaffold plays an important role in the formation and maintenance of structural integrity of the mitotic chromosomes. Here, the data concerning the structure and major components of the chromosome scaffold are presented. The experiments suggesting that the scaffold represents a system of discrete linker proteins and the data about high mobility of scaffolding proteins are discussed. Furthermore, the data about higher-level chromatin structures (elementary chromonema and 200–250 nm fibers) and behavior of scaffolding proteins are compared. The results presented agree with the idea that at the present stage it is possible to discriminate chromatin complexes, whose structural integrity is not maintained by the chromosome scaffold.  相似文献   

12.
We have identified a novel human centromere-associated protein by preparing monoclonal antibodies against a fraction of HeLa chromosome scaffold proteins enriched for centromere/kinetochore components. One monoclonal antibody (mAb177) specifically stains the centromere region of mitotic human chromosomes and binds to a novel, approximately 250-300 kd chromosome scaffold associated protein named CENP-E. In cells progressing through different parts of the cell cycle, the localization of CENP-E differed markedly from that observed for the previously identified centromere proteins CENP-A, CENP-B, CENP-C and CENP-D. In contrast to these antigens, no mAb177 staining is detected during interphase, and staining first appears at the centromere region of chromosomes during prometaphase. This association with chromosomes remains throughout metaphase but is redistributed to the midplate at or just after the onset of anaphase. By telophase, the staining is localized exclusively to the midbody. Microinjection of the mAb177 into metaphase cells blocks or significantly delays progression into anaphase, although the morphology of the spindle and the configuration of the metaphase chromosomes appear normal in these metaphase arrested cells. This demonstrates that CENP-E function is required for the transition from metaphase to anaphase.  相似文献   

13.
A large amount of metaphase chromosomes were isolated from synchronized human cell lines by a polyamine procedure. All the chromosomal proteins extracted by an acetic acid extraction method were fully dissolved into the sample solutions for isoelectric focusing (IEF) or radical free and highly reduced (RFHR) two-dimensional electrophoreses (2-DEs). As a result, well-separated and highly reproducible 2-DE patterns were obtained. This could not be attained by an ordinary acetone precipitation method. The 2-DE patterns visualized using Coomassie Brilliant Blue (CBB) staining indicated that more than one hundred proteins were involved in the isolated metaphase chromosomes, although the most abundant proteins, histones, occupied a greater part of the chromosomal proteins. It was also shown that colcemid treatment for cell cycle synchronization had little effect on the 2-DE pattern compared to that obtained without the treatment. Furthermore, no significant differences were observed in the 2-DE patterns among the chromosomal proteins prepared from two different human cell lines, BALL-1 and K562. However, 2-DE analysis of isolated metaphase chromosomes from HeLa cells apparently showed a smaller number of proteins than the BALL-1 and K562 cell lines at a neutral pI range. The present study paves the way for elucidating protein composition of human metaphase chromosomes.  相似文献   

14.
In the period of maturation in vivo, the chromosomes of mouse oocytes display a spectrum of unique configurations that is postulated to be related to a sequence of turnover of chromosomal proteins. Evidence on behalf of that hypothesis is provided by the following cytologic observations: The chromosomes of the diakinesis-metaphase I complement are resistant to disruption by mild treatment with trypsin. Following metaphase I, the chromosomes become exceedingly compact and display correlated increased resistance to trypsin. At telophase I, when the complements of the secondary oocyte and the first polar body have each coalesced into a “chromatin mass,” the chromosomes are greatly sensitive to trypsin. Following separation from the mass, the definitive oocyte chromosomes decompact into a “relaxed coil” conformation and display moderate trypsin sensitivity comparable to that of mitotic metaphase chromosomes. Autoradiography of [3H]-arginine and [3H]tryptophan incorporation show that while both amino acids are incorporated into the ooplasm, arginine, but not tryptophan, is incorporated into the chromosomal material. Analysis of the data indicates that incorporation takes place as two separate events, one in late dictyotene and the other post-telophase I and that the arginine-containing proteins incorporated into the dictyate chromosomes are transient and are not retained on the metaphase II chromosomes.  相似文献   

15.
Scaffold attachment of DNA loops in metaphase chromosomes   总被引:19,自引:0,他引:19  
We have examined the higher-order loop organization of DNA in interphase nuclei and metaphase chromosomes from Drosophila Kc cells, and we detect no changes in the distribution of scaffold-attached regions (SARs) between these two phases of the cell cycle. The SARs, previously defined from experiments with interphase nuclei, not only are bound to the metaphase scaffold when endogenous DNA is probed but also rebind specifically to metaphase scaffolds when added exogenously as cloned, end-labeled fragments. Since metaphase scaffolds have a simpler protein pattern than interphase nuclear scaffolds, and both have a similar binding capacity, it appears that the population of proteins required for the specific scaffold-DNA interaction is limited to those found in metaphase scaffolds. Surprisingly, metaphase scaffolds isolated from Drosophila Kc cells contain both the lamin protein and a pore-complex protein, glycoprotein (gp) 188. To study whether lamin contributes to the SAR-scaffold interaction, we have carried out comparative binding studies with scaffolds from HeLa metaphase chromosomes, which are free of lamina, and from HeLa interphase nuclei. All Drosophila SAR fragments tested bind with excellent specificity to HeLa interphase scaffolds, whereas a subset of them bind to HeLa metaphase scaffolds. The maintenance of the scaffold-DNA interaction in metaphase indicates that lamin proteins are not involved in the attachment site for at least a subset of Drosophila SARs. This evolutionary and cell-cycle conservation of scaffold binding sites is consistent with a fundamental role for these fragments in the organization of the genome into looped domains.  相似文献   

16.
Four lectins were used to recognize galactose/N-acetyl-galactosamine (Gal/GalNAc) and sialic acid residues in proteins of Chinese hamster metaphase chromosomes. In situ binding pattern of a fluorescein isothiocyanate-labelled (Gal/GalNAc)-specific lectin Sophora japonica agglutinin (SJA) showed that chromosomal SJA-binding proteins are primarily localized to the helically coiled substructure of chromatids. Numerous SJA-binding proteins were identified in Western blots of chromosomal proteins, their molecular weights ranging from 26 to 200kDa. Another Gal/GalNAc-specific lectin, peanut agglutinin (PNA), with a slightly different sugar binding specificity, did not bind to Chinese hamster metaphase chromosomes, and in Western blots only two chromosomal protein bands were faintly stained. The in situ labelling patterns of two sialic acid-specific lectins, Maackia amurensis (MAA) and Sambucus nigra (SNA) agglutinins, both showed that the helically coiled substructure of chromatids is also enriched in sialylated proteins. In Western blot analysis 11 MAA-binding protein bands with molecular weights ranging from 54 to 215kDa were identified, while SNA only bound to one protein band of 67kDa. MAA and SNA are specific for α (2|ad3)- and α (2|ad6)-linked sialic acid residues, respectively. Thus, it is likely that α (2|ad3)-linked sialic acid residues are more common in chromosomal proteins than α(2|ad6)-linked sialic acid residues. These data suggest that Gal/GalNAc and sialic acid-containing glycoproteins exist in metaphase chromosomes and that these proteins may have a role in the formation of higher order metaphase chromosome structures.  相似文献   

17.
The proteins on metaphase chromosomes theoretically may be distributed ubiquitously throughout the karyotype, may be present uniquely on individual chromosomes or classes of chromosomes, or may exist in any combination of the above. Separation of chromosomes according to size using sucrose velocity gradients in high capacity zonal centrifuge rotors allows sufficient fractionation of the genome to indicate the distribution of proteins within the karyotype. Flow cytometric analysis and direct microscopic analysis were used to evaluate qualitatively the types of chromosomes present in the fractions obtained. This report is the first quantitative evidence that some of the chromosomal proteins are not distributed ubiquitously on all of the chromosomes of the karyotype.  相似文献   

18.
Harald Fuge 《Chromosoma》1973,43(2):109-143
One metaphase I spindle, seven anaphase I spindles of different stages, and one metaphase II spindle were sectioned in series. The ultrastructure of chromosomes was examined and microtubules (MTs) were counted. The main results of the study are summarized as follows: 1. The autosomes move at the periphery of the continuous MTs during anaphase while the sex chromosomes move more or less within this group of MTs. 2. In metaphase the antosomes have few coarse surface projections, in anaphase many, but more delicate projections of irregular shape which seem to transform into regular radial lamellae at the end of movement. 3. In metaphase continuous MTs have no contact with the chromosomal surface, while during anaphase movement continuous MTs lie closer to the chromosomes, and finally arrange themselves between the radial surface lamellae. There they show lateral filamentous connections with the chromosomal surface. 4. The MT distribution profiles of metaphase and anaphase are different. While the highest density of MTs is observed in the middle region of the spindle in metaphase, there are two density zones during autosomal movement, each in one half spindle in front of the autosomes. After the autosomes have reached the poles the distribution profile is again similar to the metaphase condition. The MT distribution in metaphase II is the same as in metaphase I. Possible explanations for these observations are discussed in detail. 5. There is an overall decrease in MT content during anaphase. 6. With the onset of anaphase MTs are seen within the spindle mantle, closely associated with mitochondria. — Several theoretical aspects of anaphase mechanism are briefly discussed.  相似文献   

19.
How the same DNA sequences can function in the three-dimensional architecture of interphase nucleus, fold in the very compact structure of metaphase chromosomes and go precisely back to the original interphase architecture in the following cell cycle remains an unresolved question to this day. The strategy used to address this issue was to analyze the correlations between chromosome architecture and the compositional patterns of DNA sequences spanning a size range from a few hundreds to a few thousands Kilobases. This is a critical range that encompasses isochores, interphase chromatin domains and boundaries, and chromosomal bands. The solution rests on the following key points: 1) the transition from the looped domains and sub-domains of interphase chromatin to the 30-nm fiber loops of early prophase chromosomes goes through the unfolding into an extended chromatin structure (probably a 10-nm “beads-on-a-string” structure); 2) the architectural proteins of interphase chromatin, such as CTCF and cohesin sub-units, are retained in mitosis and are part of the discontinuous protein scaffold of mitotic chromosomes; 3) the conservation of the link between architectural proteins and their binding sites on DNA through the cell cycle explains the “mitotic memory” of interphase architecture and the reversibility of the interphase to mitosis process. The results presented here also lead to a general conclusion which concerns the existence of correlations between the isochore organization of the genome and the architecture of chromosomes from interphase to metaphase.  相似文献   

20.
DNase I digestion of metaphase chromosomes, that have been extensively digested with Hae III, further released chromosomal DNA and proteins; 3.3% and 10.8% of the chromosomal DNA and proteins, respectively, remained insoluble. However, digestion of chromosomes first with DNase I followed by Hae III caused most of the proteins to remain in the insoluble fraction. DNase I released DNA fragments of 300 base pairs long which were not released by Hae III digestion. These DNA fragments may be protected by protein components from further fragmentation by DNase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号